Gensim - Utilisation du modèle de sujet LDA
Dans ce chapitre, nous allons comprendre comment utiliser le modèle de rubrique LDA (Latent Dirichlet Allocation).
Affichage des rubriques dans le modèle LDA
Le modèle LDA (lda_model) que nous avons créé ci-dessus peut être utilisé pour afficher les rubriques des documents. Cela peut être fait à l'aide du script suivant -
pprint(lda_model.print_topics())
doc_lda = lda_model[corpus]
Production
[
(0,
'0.036*"go" + 0.027*"get" + 0.021*"time" + 0.017*"back" + 0.015*"good" + '
'0.014*"much" + 0.014*"be" + 0.013*"car" + 0.013*"well" + 0.013*"year"'),
(1,
'0.078*"screen" + 0.067*"video" + 0.052*"character" + 0.046*"normal" + '
'0.045*"mouse" + 0.034*"manager" + 0.034*"disease" + 0.031*"processor" + '
'0.028*"excuse" + 0.028*"choice"'),
(2,
'0.776*"ax" + 0.079*"_" + 0.011*"boy" + 0.008*"ticket" + 0.006*"red" + '
'0.004*"conservative" + 0.004*"cult" + 0.004*"amazing" + 0.003*"runner" + '
'0.003*"roughly"'),
(3,
'0.086*"season" + 0.078*"fan" + 0.072*"reality" + 0.065*"trade" + '
'0.045*"concept" + 0.040*"pen" + 0.028*"blow" + 0.025*"improve" + '
'0.025*"cap" + 0.021*"penguin"'),
(4,
'0.027*"group" + 0.023*"issue" + 0.016*"case" + 0.016*"cause" + '
'0.014*"state" + 0.012*"whole" + 0.012*"support" + 0.011*"government" + '
'0.010*"year" + 0.010*"rate"'),
(5,
'0.133*"evidence" + 0.047*"believe" + 0.044*"religion" + 0.042*"belief" + '
'0.041*"sense" + 0.041*"discussion" + 0.034*"atheist" + 0.030*"conclusion" +
'
'0.029*"explain" + 0.029*"claim"'),
(6,
'0.083*"space" + 0.059*"science" + 0.031*"launch" + 0.030*"earth" + '
'0.026*"route" + 0.024*"orbit" + 0.024*"scientific" + 0.021*"mission" + '
'0.018*"plane" + 0.017*"satellite"'),
(7,
'0.065*"file" + 0.064*"program" + 0.048*"card" + 0.041*"window" + '
'0.038*"driver" + 0.037*"software" + 0.034*"run" + 0.029*"machine" + '
'0.029*"entry" + 0.028*"version"'),
(8,
'0.078*"publish" + 0.059*"mount" + 0.050*"turkish" + 0.043*"armenian" + '
'0.027*"western" + 0.026*"russian" + 0.025*"locate" + 0.024*"proceed" + '
'0.024*"electrical" + 0.022*"terrorism"'),
(9,
'0.023*"people" + 0.023*"child" + 0.021*"kill" + 0.020*"man" + 0.019*"death" '
'+ 0.015*"die" + 0.015*"live" + 0.014*"attack" + 0.013*"age" + '
'0.011*"church"'),
(10,
'0.092*"cpu" + 0.085*"black" + 0.071*"controller" + 0.039*"white" + '
'0.028*"water" + 0.027*"cold" + 0.025*"solid" + 0.024*"cool" + 0.024*"heat" '
'+ 0.023*"nuclear"'),
(11,
'0.071*"monitor" + 0.044*"box" + 0.042*"option" + 0.041*"generate" + '
'0.038*"vote" + 0.032*"battery" + 0.029*"wave" + 0.026*"tradition" + '
'0.026*"fairly" + 0.025*"task"'),
(12,
'0.048*"send" + 0.045*"mail" + 0.036*"list" + 0.033*"include" + '
'0.032*"price" + 0.031*"address" + 0.027*"email" + 0.026*"receive" + '
'0.024*"book" + 0.024*"sell"'),
(13,
'0.515*"drive" + 0.052*"laboratory" + 0.042*"blind" + 0.020*"investment" + '
'0.011*"creature" + 0.010*"loop" + 0.005*"dialog" + 0.000*"slave" + '
'0.000*"jumper" + 0.000*"sector"'),
(14,
'0.153*"patient" + 0.066*"treatment" + 0.062*"printer" + 0.059*"doctor" + '
'0.036*"medical" + 0.031*"energy" + 0.029*"study" + 0.029*"probe" + '
'0.024*"mph" + 0.020*"physician"'),
(15,
'0.068*"law" + 0.055*"gun" + 0.039*"government" + 0.036*"right" + '
'0.029*"state" + 0.026*"drug" + 0.022*"crime" + 0.019*"person" + '
'0.019*"citizen" + 0.019*"weapon"'),
(16,
'0.107*"team" + 0.102*"game" + 0.078*"play" + 0.055*"win" + 0.052*"player" + '
'0.051*"year" + 0.030*"score" + 0.025*"goal" + 0.023*"wing" + 0.023*"run"'),
(17,
'0.031*"say" + 0.026*"think" + 0.022*"people" + 0.020*"make" + 0.017*"see" + '
'0.016*"know" + 0.013*"come" + 0.013*"even" + 0.013*"thing" + 0.013*"give"'),
(18,
'0.039*"system" + 0.034*"use" + 0.023*"key" + 0.016*"bit" + 0.016*"also" + '
'0.015*"information" + 0.014*"source" + 0.013*"chip" + 0.013*"available" + '
'0.010*"provide"'),
(19,
'0.085*"line" + 0.073*"write" + 0.053*"article" + 0.046*"organization" + '
'0.034*"host" + 0.023*"be" + 0.023*"know" + 0.017*"thank" + 0.016*"want" + '
'0.014*"help"')
]
Perplexité du modèle de calcul
Le modèle LDA (lda_model) que nous avons créé ci-dessus peut être utilisé pour calculer la perplexité du modèle, c'est-à-dire la qualité du modèle. Plus le score est bas, meilleur sera le modèle. Cela peut être fait à l'aide du script suivant -
print('\nPerplexity: ', lda_model.log_perplexity(corpus))
Production
Perplexity: -12.338664984332151
Calcul du score de cohérence
Le modèle LDA (lda_model)nous avons créé ci-dessus peut être utilisé pour calculer le score de cohérence du modèle, c'est-à-dire la moyenne / médiane des scores de similitude de mots par paires des mots du sujet. Cela peut être fait à l'aide du script suivant -
coherence_model_lda = CoherenceModel(
model=lda_model, texts=data_lemmatized, dictionary=id2word, coherence='c_v'
)
coherence_lda = coherence_model_lda.get_coherence()
print('\nCoherence Score: ', coherence_lda)
Production
Coherence Score: 0.510264381411751
Visualiser les thèmes-mots-clés
Le modèle LDA (lda_model)nous avons créé ci-dessus peut être utilisé pour examiner les sujets produits et les mots-clés associés. Il peut être visualisé en utilisantpyLDAvispaquet comme suit -
pyLDAvis.enable_notebook()
vis = pyLDAvis.gensim.prepare(lda_model, corpus, id2word)
vis
Production
À partir de la sortie ci-dessus, les bulles sur le côté gauche représentent un sujet et plus la bulle est grande, plus ce sujet est répandu. Le modèle de sujet sera bon si le modèle de sujet a de grandes bulles non superposées dispersées dans le graphique.