ओपनसीवी - अनुकूली थ्रेसहोल्ड
में simple thresholdingदहलीज मान वैश्विक है, अर्थात, यह छवि के सभी पिक्सेल के लिए समान है। Adaptive thresholding वह विधि है जहां छोटे क्षेत्रों के लिए सीमा मूल्य की गणना की जाती है और इसलिए, विभिन्न क्षेत्रों के लिए अलग-अलग सीमा मूल्य होंगे।
OpenCV में, आप विधि का उपयोग करके एक छवि पर अनुकूली सीमा ऑपरेशन कर सकते हैं adaptiveThreshold() का Imgprocकक्षा। इस विधि का वाक्य विन्यास निम्नलिखित है।
adaptiveThreshold(src, dst, maxValue, adaptiveMethod, thresholdType, blockSize, C)
यह विधि निम्नलिखित मापदंडों को स्वीकार करती है -
src - कक्षा की एक वस्तु Mat स्रोत (इनपुट) छवि का प्रतिनिधित्व करना।
dst - कक्षा की एक वस्तु Mat गंतव्य (आउटपुट) छवि का प्रतिनिधित्व करना।
maxValue - डबल वैल्यू का वैरिएबल उस वैल्यू का प्रतिनिधित्व करता है जो दिया जाना है अगर पिक्सेल वैल्यू थ्रेशोल्ड वैल्यू से अधिक है।
adaptiveMethod- पूर्णांक के एक चर का उपयोग करने के लिए अनुकूली विधि का प्रतिनिधित्व करने वाला प्रकार। यह या तो निम्नलिखित दो मूल्यों में से एक होगा
ADAPTIVE_THRESH_MEAN_C - दहलीज मान पड़ोस के क्षेत्र का मतलब है।
ADAPTIVE_THRESH_GAUSSIAN_C - थ्रेसहोल्ड मान पड़ोस के मूल्यों की भारित राशि है जहां वजन एक गाऊसी खिड़की है।
thresholdType - पूर्णांक प्रकार का एक चर जिसका उपयोग करने के लिए दहलीज के प्रकार का प्रतिनिधित्व करता है।
blockSize - पूर्णांक मान की गणना करने के लिए उपयोग किए जाने वाले पिक्सेनेबोरहुड के आकार का प्रतिनिधित्व करने वाले पूर्णांक प्रकार का एक चर।
C - दोनों तरीकों में उपयोग किए गए निरंतर का प्रतिनिधित्व करने वाले दोहरे प्रकार का एक चर (माध्य या भारित माध्य से घटाया गया)।
उदाहरण
निम्न कार्यक्रम दर्शाता है कि OpenCV में एक छवि पर अनुकूली थ्रेशोल्ड ऑपरेशन कैसे किया जाए। यहां हम प्रकार के अनुकूली सीमा का चयन कर रहे हैंbinary तथा ADAPTIVE_THRESH_MEAN_C दहलीज विधि के लिए।
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class AdaptiveThresh {
public static void main(String args[]) throws Exception {
// Loading the OpenCV core library
System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
// Reading the Image from the file and storing it in to a Matrix object
String file ="E:/OpenCV/chap14/thresh_input.jpg";
// Reading the image
Mat src = Imgcodecs.imread(file,0);
// Creating an empty matrix to store the result
Mat dst = new Mat();
Imgproc.adaptiveThreshold(src, dst, 125, Imgproc.ADAPTIVE_THRESH_MEAN_C,
Imgproc.THRESH_BINARY, 11, 12);
// Writing the image
Imgcodecs.imwrite("E:/OpenCV/chap14/Adaptivemean_thresh_binary.jpg", dst);
System.out.println("Image Processed");
}
}
मान लें कि निम्नलिखित इनपुट छवि है thresh_input.jpg उपरोक्त कार्यक्रम में निर्दिष्ट।
उत्पादन
कार्यक्रम को निष्पादित करने पर, आपको निम्नलिखित आउटपुट मिलेगा -
Image Processed
यदि आप निर्दिष्ट पथ खोलते हैं, तो आप आउटपुट इमेज को निम्नानुसार देख सकते हैं -
अन्य प्रकार के अनुकूली थ्रेसहोल्डिंग
इसके अलावा ADAPTIVE_THRESH_MEAN_C अनुकूली विधि के रूप में और THRESH_BINARY पिछले उदाहरण में प्रदर्शित की गई थ्रेशोल्ड प्रकार के रूप में, हम इन दो मूल्यों के अधिक संयोजनों को चुन सकते हैं।
Imgproc.adaptiveThreshold(src, dst, 125, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 11, 12);
मापदंडों के लिए मूल्यों के विभिन्न संयोजनों का प्रतिनिधित्व करने वाले मूल्य निम्नलिखित हैं adaptiveMethod तथा thresholdType और उनके संबंधित आउटपुट।
एडेप्टिवमेथोड / थ्रेसहोल्ड टाइप | ADAPTIVE_THRESH_MEAN_C | ADAPTIVE_THRESH_GAUSSIAN_C: |
---|---|---|
THRESH_BINARY |
|
|
THRESH_BINARY_INV |
|
|