प्लॉटली - हीटमैप
एक हीट मैप (या हीटमैप) डेटा का एक ग्राफिकल प्रतिनिधित्व है जहां मैट्रिक्स में निहित व्यक्तिगत मूल्यों को रंगों के रूप में दर्शाया जाता है। हीट मैप्स का प्राथमिक उद्देश्य किसी डेटासेट के भीतर स्थानों / घटनाओं की मात्रा को बेहतर ढंग से देखना और दर्शकों को डेटा विज़ुअलाइज़ेशन वाले क्षेत्रों की ओर निर्देशन में सहायता करना है जो सबसे अधिक मायने रखते हैं।
मूल्यों को संप्रेषित करने के लिए रंग पर उनकी निर्भरता के कारण, हीट मैप्स का उपयोग आमतौर पर संख्यात्मक मूल्यों के अधिक सामान्यीकृत दृश्य को प्रदर्शित करने के लिए किया जाता है। हीट मैप्स रुझानों पर ध्यान आकर्षित करने में बेहद बहुमुखी और कुशल हैं, और यह इन कारणों से वे एनालिटिक्स समुदाय के भीतर तेजी से लोकप्रिय हो गए हैं।
हीट मैप्स सहज रूप से आत्म-व्याख्यात्मक हैं। गहरा छाया, अधिक से अधिक मात्रा (उच्च मूल्य, तंग फैलाव, आदि)। प्लॉटली के ग्राफ_बॉजेक्ट्स मॉड्यूल में होते हैंHeatmap()समारोह। इसे x की आवश्यकता है,y तथा zजिम्मेदार बताते हैं। उनका मान एक सूची, सुन्न सरणी या पंडों डेटाफ्रेम हो सकता है।
निम्नलिखित उदाहरण में, हमारे पास एक 2 डी सूची या सरणी है जो डेटा (टन / वर्ष में विभिन्न किसानों द्वारा फसल) को परिभाषित करती है। फिर हमें किसानों और उनके द्वारा खेती की जाने वाली सब्जियों के नामों की दो सूचियों की भी आवश्यकता है।
vegetables = [
"cucumber",
"tomato",
"lettuce",
"asparagus",
"potato",
"wheat",
"barley"
]
farmers = [
"Farmer Joe",
"Upland Bros.",
"Smith Gardening",
"Agrifun",
"Organiculture",
"BioGoods Ltd.",
"Cornylee Corp."
]
harvest = np.array(
[
[0.8, 2.4, 2.5, 3.9, 0.0, 4.0, 0.0],
[2.4, 0.0, 4.0, 1.0, 2.7, 0.0, 0.0],
[1.1, 2.4, 0.8, 4.3, 1.9, 4.4, 0.0],
[0.6, 0.0, 0.3, 0.0, 3.1, 0.0, 0.0],
[0.7, 1.7, 0.6, 2.6, 2.2, 6.2, 0.0],
[1.3, 1.2, 0.0, 0.0, 0.0, 3.2, 5.1],
[0.1, 2.0, 0.0, 1.4, 0.0, 1.9, 6.3]
]
)
trace = go.Heatmap(
x = vegetables,
y = farmers,
z = harvest,
type = 'heatmap',
colorscale = 'Viridis'
)
data = [trace]
fig = go.Figure(data = data)
iplot(fig)
उपर्युक्त कोड का आउटपुट निम्नानुसार दिया गया है -