पायथन - टैगिंग शब्द
टैगिंग टेक्स्ट प्रोसेसिंग की एक आवश्यक विशेषता है जहाँ हम शब्दों को व्याकरणिक वर्गीकरण में टैग करते हैं। हम प्रत्येक शब्द के लिए टैग बनाने के लिए टोकन और पॉस_टैग फ़ंक्शन की मदद लेते हैं।
import nltk
text = nltk.word_tokenize("A Python is a serpent which eats eggs from the nest")
tagged_text=nltk.pos_tag(text)
print(tagged_text)
जब हम उपरोक्त कार्यक्रम चलाते हैं, तो हमें निम्न आउटपुट मिलते हैं -
[('A', 'DT'), ('Python', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('serpent', 'NN'),
('which', 'WDT'), ('eats', 'VBZ'), ('eggs', 'NNS'), ('from', 'IN'),
('the', 'DT'), ('nest', 'JJS')]
टैग विवरण
हम निम्नलिखित प्रोग्राम का उपयोग करके प्रत्येक टैग के अर्थ का वर्णन कर सकते हैं जो इन-बिल्ट वैल्यू दिखाता है।
import nltk
nltk.help.upenn_tagset('NN')
nltk.help.upenn_tagset('IN')
nltk.help.upenn_tagset('DT')
जब हम उपरोक्त कार्यक्रम चलाते हैं, तो हमें निम्न आउटपुट मिलते हैं -
NN: noun, common, singular or mass
common-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falloff slick wind hyena override subhumanity
machinist ...
IN: preposition or conjunction, subordinating
astride among uppon whether out inside pro despite on by throughout
below within for towards near behind atop around if like until below
next into if beside ...
DT: determiner
all an another any both del each either every half la many much nary
neither no some such that the them these this those
एक कॉर्पस टैगिंग
हम एक कॉर्पस डेटा को भी टैग कर सकते हैं और उस कॉर्पस में प्रत्येक शब्द के लिए टैग किए गए परिणाम देख सकते हैं।
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import gutenberg
sample = gutenberg.raw("blake-poems.txt")
tokenized = sent_tokenize(sample)
for i in tokenized[:2]:
words = nltk.word_tokenize(i)
tagged = nltk.pos_tag(words)
print(tagged)
जब हम उपरोक्त कार्यक्रम चलाते हैं तो हमें निम्नलिखित आउटपुट मिलते हैं -
[([', 'JJ'), (Poems', 'NNP'), (by', 'IN'), (William', 'NNP'), (Blake', 'NNP'), (1789', 'CD'),
(]', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (AND', 'NNP'), (OF', 'NNP'),
(EXPERIENCE', 'NNP'), (and', 'CC'), (THE', 'NNP'), (BOOK', 'NNP'), (of', 'IN'),
(THEL', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (INTRODUCTION', 'NNP'),
(Piping', 'VBG'), (down', 'RP'), (the', 'DT'), (valleys', 'NN'), (wild', 'JJ'),
(,', ','), (Piping', 'NNP'), (songs', 'NNS'), (of', 'IN'), (pleasant', 'JJ'), (glee', 'NN'),
(,', ','), (On', 'IN'), (a', 'DT'), (cloud', 'NN'), (I', 'PRP'), (saw', 'VBD'),
(a', 'DT'), (child', 'NN'), (,', ','), (And', 'CC'), (he', 'PRP'), (laughing', 'VBG'),
(said', 'VBD'), (to', 'TO'), (me', 'PRP'), (:', ':'), (``', '``'), (Pipe', 'VB'),
(a', 'DT'), (song', 'NN'), (about', 'IN'), (a', 'DT'), (Lamb', 'NN'), (!', '.'), (u"''", "''")]