R - Pembentukan Ulang Data
Pembentukan Ulang Data di R adalah tentang mengubah cara data diatur menjadi baris dan kolom. Sebagian besar waktu pemrosesan data di R dilakukan dengan mengambil data masukan sebagai kerangka data. Mudah untuk mengekstrak data dari baris dan kolom bingkai data tetapi ada situasi ketika kami membutuhkan bingkai data dalam format yang berbeda dari format yang kami terima. R memiliki banyak fungsi untuk memisahkan, menggabungkan, dan mengubah baris menjadi kolom dan sebaliknya dalam bingkai data.
Menggabungkan Kolom dan Baris dalam Bingkai Data
Kita dapat menggabungkan beberapa vektor untuk membuat bingkai data menggunakan cbind()fungsi. Juga kita bisa menggabungkan dua frame data menggunakanrbind() fungsi.
# Create vector objects.
city <- c("Tampa","Seattle","Hartford","Denver")
state <- c("FL","WA","CT","CO")
zipcode <- c(33602,98104,06161,80294)
# Combine above three vectors into one data frame.
addresses <- cbind(city,state,zipcode)
# Print a header.
cat("# # # # The First data frame\n")
# Print the data frame.
print(addresses)
# Create another data frame with similar columns
new.address <- data.frame(
city = c("Lowry","Charlotte"),
state = c("CO","FL"),
zipcode = c("80230","33949"),
stringsAsFactors = FALSE
)
# Print a header.
cat("# # # The Second data frame\n")
# Print the data frame.
print(new.address)
# Combine rows form both the data frames.
all.addresses <- rbind(addresses,new.address)
# Print a header.
cat("# # # The combined data frame\n")
# Print the result.
print(all.addresses)
Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -
# # # # The First data frame
city state zipcode
[1,] "Tampa" "FL" "33602"
[2,] "Seattle" "WA" "98104"
[3,] "Hartford" "CT" "6161"
[4,] "Denver" "CO" "80294"
# # # The Second data frame
city state zipcode
1 Lowry CO 80230
2 Charlotte FL 33949
# # # The combined data frame
city state zipcode
1 Tampa FL 33602
2 Seattle WA 98104
3 Hartford CT 6161
4 Denver CO 80294
5 Lowry CO 80230
6 Charlotte FL 33949
Menggabungkan Bingkai Data
Kita bisa menggabungkan dua frame data dengan menggunakan merge()fungsi. Bingkai data harus memiliki nama kolom yang sama tempat penggabungan terjadi.
Dalam contoh di bawah ini, kami mempertimbangkan kumpulan data tentang Diabetes pada Wanita India Pima yang tersedia di nama perpustakaan "MASS". kami menggabungkan dua kumpulan data berdasarkan nilai tekanan darah ("bp") dan indeks massa tubuh ("bmi"). Saat memilih dua kolom ini untuk penggabungan, catatan di mana nilai dari dua variabel ini cocok di kedua kumpulan data digabungkan bersama untuk membentuk satu bingkai data.
library(MASS)
merged.Pima <- merge(x = Pima.te, y = Pima.tr,
by.x = c("bp", "bmi"),
by.y = c("bp", "bmi")
)
print(merged.Pima)
nrow(merged.Pima)
Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -
bp bmi npreg.x glu.x skin.x ped.x age.x type.x npreg.y glu.y skin.y ped.y
1 60 33.8 1 117 23 0.466 27 No 2 125 20 0.088
2 64 29.7 2 75 24 0.370 33 No 2 100 23 0.368
3 64 31.2 5 189 33 0.583 29 Yes 3 158 13 0.295
4 64 33.2 4 117 27 0.230 24 No 1 96 27 0.289
5 66 38.1 3 115 39 0.150 28 No 1 114 36 0.289
6 68 38.5 2 100 25 0.324 26 No 7 129 49 0.439
7 70 27.4 1 116 28 0.204 21 No 0 124 20 0.254
8 70 33.1 4 91 32 0.446 22 No 9 123 44 0.374
9 70 35.4 9 124 33 0.282 34 No 6 134 23 0.542
10 72 25.6 1 157 21 0.123 24 No 4 99 17 0.294
11 72 37.7 5 95 33 0.370 27 No 6 103 32 0.324
12 74 25.9 9 134 33 0.460 81 No 8 126 38 0.162
13 74 25.9 1 95 21 0.673 36 No 8 126 38 0.162
14 78 27.6 5 88 30 0.258 37 No 6 125 31 0.565
15 78 27.6 10 122 31 0.512 45 No 6 125 31 0.565
16 78 39.4 2 112 50 0.175 24 No 4 112 40 0.236
17 88 34.5 1 117 24 0.403 40 Yes 4 127 11 0.598
age.y type.y
1 31 No
2 21 No
3 24 No
4 21 No
5 21 No
6 43 Yes
7 36 Yes
8 40 No
9 29 Yes
10 28 No
11 55 No
12 39 No
13 39 No
14 49 Yes
15 49 Yes
16 38 No
17 28 No
[1] 17
Melting dan Casting
Salah satu aspek yang paling menarik dari pemrograman R adalah tentang mengubah bentuk data dalam beberapa langkah untuk mendapatkan bentuk yang diinginkan. Fungsi yang digunakan untuk melakukan ini disebutmelt() dan cast().
Kami menganggap dataset yang disebut kapal yang ada di perpustakaan disebut "MASS".
library(MASS)
print(ships)
Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -
type year period service incidents
1 A 60 60 127 0
2 A 60 75 63 0
3 A 65 60 1095 3
4 A 65 75 1095 4
5 A 70 60 1512 6
.............
.............
8 A 75 75 2244 11
9 B 60 60 44882 39
10 B 60 75 17176 29
11 B 65 60 28609 58
............
............
17 C 60 60 1179 1
18 C 60 75 552 1
19 C 65 60 781 0
............
............
Lelehkan Data
Sekarang kami mencairkan data untuk mengaturnya, mengonversi semua kolom selain jenis dan tahun menjadi beberapa baris.
molten.ships <- melt(ships, id = c("type","year"))
print(molten.ships)
Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -
type year variable value
1 A 60 period 60
2 A 60 period 75
3 A 65 period 60
4 A 65 period 75
............
............
9 B 60 period 60
10 B 60 period 75
11 B 65 period 60
12 B 65 period 75
13 B 70 period 60
...........
...........
41 A 60 service 127
42 A 60 service 63
43 A 65 service 1095
...........
...........
70 D 70 service 1208
71 D 75 service 0
72 D 75 service 2051
73 E 60 service 45
74 E 60 service 0
75 E 65 service 789
...........
...........
101 C 70 incidents 6
102 C 70 incidents 2
103 C 75 incidents 0
104 C 75 incidents 1
105 D 60 incidents 0
106 D 60 incidents 0
...........
...........
Transmisikan Data Molten
Kami dapat mentransmisikan data cair ke dalam bentuk baru di mana agregat dari setiap jenis kapal untuk setiap tahun dibuat. Itu dilakukan dengan menggunakancast() fungsi.
recasted.ship <- cast(molten.ships, type+year~variable,sum)
print(recasted.ship)
Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -
type year period service incidents
1 A 60 135 190 0
2 A 65 135 2190 7
3 A 70 135 4865 24
4 A 75 135 2244 11
5 B 60 135 62058 68
6 B 65 135 48979 111
7 B 70 135 20163 56
8 B 75 135 7117 18
9 C 60 135 1731 2
10 C 65 135 1457 1
11 C 70 135 2731 8
12 C 75 135 274 1
13 D 60 135 356 0
14 D 65 135 480 0
15 D 70 135 1557 13
16 D 75 135 2051 4
17 E 60 135 45 0
18 E 65 135 1226 14
19 E 70 135 3318 17
20 E 75 135 542 1