Python Pandas - funkcje okna
Do pracy z danymi liczbowymi, Pandy zapewniają kilka wariantów, takich jak przewijanie, rozwijanie i wykładniczo przesuwające się wagi dla statystyk okien. Wśród nich sąsum, mean, median, variance, covariance, correlation, itp.
Dowiemy się teraz, jak każdy z nich można zastosować do obiektów DataFrame.
.rolling () Funkcja
Tę funkcję można zastosować do serii danych. Określićwindow=n argument i zastosuj na jego wierzchu odpowiednią funkcję statystyczną.
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
print df.rolling(window=3).mean()
Jego output wygląda następująco -
A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 0.434553 -0.667940 -1.051718 -0.826452
2000-01-04 0.628267 -0.047040 -0.287467 -0.161110
2000-01-05 0.398233 0.003517 0.099126 -0.405565
2000-01-06 0.641798 0.656184 -0.322728 0.428015
2000-01-07 0.188403 0.010913 -0.708645 0.160932
2000-01-08 0.188043 -0.253039 -0.818125 -0.108485
2000-01-09 0.682819 -0.606846 -0.178411 -0.404127
2000-01-10 0.688583 0.127786 0.513832 -1.067156
Note - Ponieważ rozmiar okna wynosi 3, dla pierwszych dwóch elementów są wartości zerowe, a od trzeciego wartość będzie średnią n, n-1 i n-2elementy. W ten sposób możemy również zastosować różne funkcje, jak wspomniano powyżej.
.expanding (), funkcja
Tę funkcję można zastosować do serii danych. Określićmin_periods=n argument i zastosuj na jego wierzchu odpowiednią funkcję statystyczną.
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
print df.expanding(min_periods=3).mean()
Jego output wygląda następująco -
A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 0.434553 -0.667940 -1.051718 -0.826452
2000-01-04 0.743328 -0.198015 -0.852462 -0.262547
2000-01-05 0.614776 -0.205649 -0.583641 -0.303254
2000-01-06 0.538175 -0.005878 -0.687223 -0.199219
2000-01-07 0.505503 -0.108475 -0.790826 -0.081056
2000-01-08 0.454751 -0.223420 -0.671572 -0.230215
2000-01-09 0.586390 -0.206201 -0.517619 -0.267521
2000-01-10 0.560427 -0.037597 -0.399429 -0.376886
.ewm () Funkcja
ewmjest stosowany do serii danych. Podaj dowolne z kom, span,halflifeargument i zastosuj na jego wierzchu odpowiednią funkcję statystyczną. Przypisuje wagi wykładniczo.
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
print df.ewm(com=0.5).mean()
Jego output wygląda następująco -
A B C D
2000-01-01 1.088512 -0.650942 -2.547450 -0.566858
2000-01-02 0.865131 -0.453626 -1.137961 0.058747
2000-01-03 -0.132245 -0.807671 -0.308308 -1.491002
2000-01-04 1.084036 0.555444 -0.272119 0.480111
2000-01-05 0.425682 0.025511 0.239162 -0.153290
2000-01-06 0.245094 0.671373 -0.725025 0.163310
2000-01-07 0.288030 -0.259337 -1.183515 0.473191
2000-01-08 0.162317 -0.771884 -0.285564 -0.692001
2000-01-09 1.147156 -0.302900 0.380851 -0.607976
2000-01-10 0.600216 0.885614 0.569808 -1.110113
Funkcje okna są głównie używane do graficznego znajdowania trendów w danych poprzez wygładzanie krzywej. Jeśli codzienne dane są bardzo zróżnicowane i dostępnych jest wiele punktów danych, jedną metodą jest pobranie próbek i wykreślenie, a inną metodą jest zastosowanie obliczeń w oknie i wykreślenie wykresu na wynikach. Tymi metodami możemy wygładzić krzywą lub trend.