NumPy - Математические функции

Совершенно понятно, что NumPy содержит большое количество различных математических операций. NumPy предоставляет стандартные тригонометрические функции, функции для арифметических операций, обработки комплексных чисел и т. Д.

Тригонометрические функции

NumPy имеет стандартные тригонометрические функции, которые возвращают тригонометрические отношения для заданного угла в радианах.

Example

import numpy as np 
a = np.array([0,30,45,60,90]) 

print 'Sine of different angles:' 
# Convert to radians by multiplying with pi/180 
print np.sin(a*np.pi/180) 
print '\n'  

print 'Cosine values for angles in array:' 
print np.cos(a*np.pi/180) 
print '\n'  

print 'Tangent values for given angles:' 
print np.tan(a*np.pi/180)

Вот его результат -

Sine of different angles:
[ 0.          0.5         0.70710678  0.8660254   1.        ]

Cosine values for angles in array:
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01
   6.12323400e-17]                                                            

Tangent values for given angles:
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00
   1.63312394e+16]

arcsin, arcos, и arctanфункции возвращают тригонометрические значения, обратные sin, cos и tan данного угла. Результат этих функций может быть проверенnumpy.degrees() function преобразовав радианы в градусы.

Example

import numpy as np 
a = np.array([0,30,45,60,90]) 

print 'Array containing sine values:' 
sin = np.sin(a*np.pi/180) 
print sin 
print '\n'  

print 'Compute sine inverse of angles. Returned values are in radians.' 
inv = np.arcsin(sin) 
print inv 
print '\n'  

print 'Check result by converting to degrees:' 
print np.degrees(inv) 
print '\n'  

print 'arccos and arctan functions behave similarly:' 
cos = np.cos(a*np.pi/180) 
print cos 
print '\n'  

print 'Inverse of cos:' 
inv = np.arccos(cos) 
print inv 
print '\n'  

print 'In degrees:' 
print np.degrees(inv) 
print '\n'  

print 'Tan function:' 
tan = np.tan(a*np.pi/180) 
print tan
print '\n'  

print 'Inverse of tan:' 
inv = np.arctan(tan) 
print inv 
print '\n'  

print 'In degrees:' 
print np.degrees(inv)

Его вывод выглядит следующим образом -

Array containing sine values:
[ 0.          0.5         0.70710678  0.8660254   1.        ]

Compute sine inverse of angles. Returned values are in radians.
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633] 

Check result by converting to degrees:
[  0.  30.  45.  60.  90.]

arccos and arctan functions behave similarly:
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01          
   6.12323400e-17] 

Inverse of cos:
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633] 

In degrees:
[  0.  30.  45.  60.  90.] 

Tan function:
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00          
   1.63312394e+16]

Inverse of tan:
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633]

In degrees:
[  0.  30.  45.  60.  90.]

Функции для округления

numpy.around ()

Это функция, которая возвращает значение, округленное до желаемой точности. Функция принимает следующие параметры.

numpy.around(a,decimals)

Где,

Sr. No. Параметр и описание
1

a

Входные данные

2

decimals

Число десятичных знаков, до которых нужно округлить. По умолчанию - 0. Если отрицательное, целое число округляется до позиции слева от десятичной точки.

Example

import numpy as np 
a = np.array([1.0,5.55, 123, 0.567, 25.532]) 

print 'Original array:' 
print a 
print '\n'  

print 'After rounding:' 
print np.around(a) 
print np.around(a, decimals = 1) 
print np.around(a, decimals = -1)

Он производит следующий вывод -

Original array:                                                               
[   1.       5.55   123.       0.567   25.532] 

After rounding:                                                               
[   1.    6.   123.    1.   26. ]                                               
[   1.    5.6  123.    0.6  25.5]                                          
[   0.    10.  120.    0.   30. ]

numpy.floor ()

Эта функция возвращает наибольшее целое число, не превышающее входной параметр. Полscalar x самый большой integer i, так что i <= x. Обратите внимание, что в Python пол всегда округляется от 0.

Example

import numpy as np 
a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) 

print 'The given array:' 
print a 
print '\n'  

print 'The modified array:' 
print np.floor(a)

Он производит следующий вывод -

The given array:                                                              
[ -1.7   1.5  -0.2   0.6  10. ]

The modified array:                                                           
[ -2.   1.  -1.   0.  10.]

numpy.ceil ()

Функция ceil () возвращает верхний предел входного значения, т. Е. Верхний предел значения scalar x самый маленький integer i, так что i >= x.

Example

import numpy as np 
a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) 

print 'The given array:' 
print a 
print '\n'  

print 'The modified array:' 
print np.ceil(a)

Он выдаст следующий результат -

The given array:                                                              
[ -1.7   1.5  -0.2   0.6  10. ]

The modified array:                                                           
[ -1.   2.  -0.   1.  10.]