Python - การติดแท็กคำ
การแท็กเป็นคุณสมบัติสำคัญของการประมวลผลข้อความที่เราแท็กคำให้เป็นหมวดหมู่ทางไวยากรณ์ เราใช้ความช่วยเหลือของโทเค็นและฟังก์ชัน pos_tag เพื่อสร้างแท็กสำหรับแต่ละคำ
import nltk
text = nltk.word_tokenize("A Python is a serpent which eats eggs from the nest")
tagged_text=nltk.pos_tag(text)
print(tagged_text)
เมื่อเรารันโปรแกรมข้างต้นเราจะได้ผลลัพธ์ดังต่อไปนี้ -
[('A', 'DT'), ('Python', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('serpent', 'NN'),
('which', 'WDT'), ('eats', 'VBZ'), ('eggs', 'NNS'), ('from', 'IN'),
('the', 'DT'), ('nest', 'JJS')]
คำอธิบายแท็ก
เราสามารถอธิบายความหมายของแต่ละแท็กโดยใช้โปรแกรมต่อไปนี้ซึ่งแสดงค่าที่สร้างขึ้น
import nltk
nltk.help.upenn_tagset('NN')
nltk.help.upenn_tagset('IN')
nltk.help.upenn_tagset('DT')
เมื่อเรารันโปรแกรมข้างต้นเราจะได้ผลลัพธ์ดังต่อไปนี้ -
NN: noun, common, singular or mass
common-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falloff slick wind hyena override subhumanity
machinist ...
IN: preposition or conjunction, subordinating
astride among uppon whether out inside pro despite on by throughout
below within for towards near behind atop around if like until below
next into if beside ...
DT: determiner
all an another any both del each either every half la many much nary
neither no some such that the them these this those
การติดแท็ก Corpus
นอกจากนี้เรายังสามารถแท็กข้อมูลคลังข้อมูลและดูผลลัพธ์ที่ติดแท็กสำหรับแต่ละคำในคลังข้อมูลนั้น
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import gutenberg
sample = gutenberg.raw("blake-poems.txt")
tokenized = sent_tokenize(sample)
for i in tokenized[:2]:
words = nltk.word_tokenize(i)
tagged = nltk.pos_tag(words)
print(tagged)
เมื่อเรารันโปรแกรมข้างต้นเราจะได้ผลลัพธ์ดังต่อไปนี้ -
[([', 'JJ'), (Poems', 'NNP'), (by', 'IN'), (William', 'NNP'), (Blake', 'NNP'), (1789', 'CD'),
(]', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (AND', 'NNP'), (OF', 'NNP'),
(EXPERIENCE', 'NNP'), (and', 'CC'), (THE', 'NNP'), (BOOK', 'NNP'), (of', 'IN'),
(THEL', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (INTRODUCTION', 'NNP'),
(Piping', 'VBG'), (down', 'RP'), (the', 'DT'), (valleys', 'NN'), (wild', 'JJ'),
(,', ','), (Piping', 'NNP'), (songs', 'NNS'), (of', 'IN'), (pleasant', 'JJ'), (glee', 'NN'),
(,', ','), (On', 'IN'), (a', 'DT'), (cloud', 'NN'), (I', 'PRP'), (saw', 'VBD'),
(a', 'DT'), (child', 'NN'), (,', ','), (And', 'CC'), (he', 'PRP'), (laughing', 'VBG'),
(said', 'VBD'), (to', 'TO'), (me', 'PRP'), (:', ':'), (``', '``'), (Pipe', 'VB'),
(a', 'DT'), (song', 'NN'), (about', 'IN'), (a', 'DT'), (Lamb', 'NN'), (!', '.'), (u"''", "''")]