Gensim - Sử dụng mô hình chủ đề LDA

Trong chương này, chúng ta sẽ hiểu cách sử dụng mô hình chủ đề Latent Dirichlet Allocation (LDA).

Xem chủ đề trong mô hình LDA

Mô hình LDA (lda_model) chúng tôi đã tạo ở trên có thể được sử dụng để xem các chủ đề từ tài liệu. Nó có thể được thực hiện với sự trợ giúp của tập lệnh sau:

pprint(lda_model.print_topics())
doc_lda = lda_model[corpus]

Đầu ra

[
   (0, 
   '0.036*"go" + 0.027*"get" + 0.021*"time" + 0.017*"back" + 0.015*"good" + '
   '0.014*"much" + 0.014*"be" + 0.013*"car" + 0.013*"well" + 0.013*"year"'),
   (1,
   '0.078*"screen" + 0.067*"video" + 0.052*"character" + 0.046*"normal" + '
   '0.045*"mouse" + 0.034*"manager" + 0.034*"disease" + 0.031*"processor" + '
   '0.028*"excuse" + 0.028*"choice"'),
   (2,
   '0.776*"ax" + 0.079*"_" + 0.011*"boy" + 0.008*"ticket" + 0.006*"red" + '
   '0.004*"conservative" + 0.004*"cult" + 0.004*"amazing" + 0.003*"runner" + '
   '0.003*"roughly"'),
   (3,
   '0.086*"season" + 0.078*"fan" + 0.072*"reality" + 0.065*"trade" + '
   '0.045*"concept" + 0.040*"pen" + 0.028*"blow" + 0.025*"improve" + '
   '0.025*"cap" + 0.021*"penguin"'),
   (4,
   '0.027*"group" + 0.023*"issue" + 0.016*"case" + 0.016*"cause" + '
   '0.014*"state" + 0.012*"whole" + 0.012*"support" + 0.011*"government" + '
   '0.010*"year" + 0.010*"rate"'),
   (5,
   '0.133*"evidence" + 0.047*"believe" + 0.044*"religion" + 0.042*"belief" + '
   '0.041*"sense" + 0.041*"discussion" + 0.034*"atheist" + 0.030*"conclusion" +
   '
   '0.029*"explain" + 0.029*"claim"'),
   (6,
   '0.083*"space" + 0.059*"science" + 0.031*"launch" + 0.030*"earth" + '
   '0.026*"route" + 0.024*"orbit" + 0.024*"scientific" + 0.021*"mission" + '
   '0.018*"plane" + 0.017*"satellite"'),
   (7,
   '0.065*"file" + 0.064*"program" + 0.048*"card" + 0.041*"window" + '
   '0.038*"driver" + 0.037*"software" + 0.034*"run" + 0.029*"machine" + '
   '0.029*"entry" + 0.028*"version"'),
   (8,
   '0.078*"publish" + 0.059*"mount" + 0.050*"turkish" + 0.043*"armenian" + '
   '0.027*"western" + 0.026*"russian" + 0.025*"locate" + 0.024*"proceed" + '
   '0.024*"electrical" + 0.022*"terrorism"'),
   (9,
   '0.023*"people" + 0.023*"child" + 0.021*"kill" + 0.020*"man" + 0.019*"death" '
   '+ 0.015*"die" + 0.015*"live" + 0.014*"attack" + 0.013*"age" + '
   '0.011*"church"'),
   (10,
   '0.092*"cpu" + 0.085*"black" + 0.071*"controller" + 0.039*"white" + '
   '0.028*"water" + 0.027*"cold" + 0.025*"solid" + 0.024*"cool" + 0.024*"heat" '
   '+ 0.023*"nuclear"'),
   (11,
   '0.071*"monitor" + 0.044*"box" + 0.042*"option" + 0.041*"generate" + '
   '0.038*"vote" + 0.032*"battery" + 0.029*"wave" + 0.026*"tradition" + '
   '0.026*"fairly" + 0.025*"task"'),
   (12,
   '0.048*"send" + 0.045*"mail" + 0.036*"list" + 0.033*"include" + '
   '0.032*"price" + 0.031*"address" + 0.027*"email" + 0.026*"receive" + '
   '0.024*"book" + 0.024*"sell"'),
   (13,
   '0.515*"drive" + 0.052*"laboratory" + 0.042*"blind" + 0.020*"investment" + '
   '0.011*"creature" + 0.010*"loop" + 0.005*"dialog" + 0.000*"slave" + '
   '0.000*"jumper" + 0.000*"sector"'),
   (14,
   '0.153*"patient" + 0.066*"treatment" + 0.062*"printer" + 0.059*"doctor" + '

   '0.036*"medical" + 0.031*"energy" + 0.029*"study" + 0.029*"probe" + '
   '0.024*"mph" + 0.020*"physician"'),
   (15,
   '0.068*"law" + 0.055*"gun" + 0.039*"government" + 0.036*"right" + '
   '0.029*"state" + 0.026*"drug" + 0.022*"crime" + 0.019*"person" + '
   '0.019*"citizen" + 0.019*"weapon"'),
   (16,
   '0.107*"team" + 0.102*"game" + 0.078*"play" + 0.055*"win" + 0.052*"player" + '
   '0.051*"year" + 0.030*"score" + 0.025*"goal" + 0.023*"wing" + 0.023*"run"'),
   (17,
   '0.031*"say" + 0.026*"think" + 0.022*"people" + 0.020*"make" + 0.017*"see" + '
   '0.016*"know" + 0.013*"come" + 0.013*"even" + 0.013*"thing" + 0.013*"give"'),
   (18,
   '0.039*"system" + 0.034*"use" + 0.023*"key" + 0.016*"bit" + 0.016*"also" + '
   '0.015*"information" + 0.014*"source" + 0.013*"chip" + 0.013*"available" + '
   '0.010*"provide"'),
   (19,
   '0.085*"line" + 0.073*"write" + 0.053*"article" + 0.046*"organization" + '
   '0.034*"host" + 0.023*"be" + 0.023*"know" + 0.017*"thank" + 0.016*"want" + '
   '0.014*"help"')
]

Sự phức tạp của mô hình máy tính

Mô hình LDA (lda_model) mà chúng ta đã tạo ở trên có thể được sử dụng để tính toán độ phức tạp của mô hình, tức là mô hình đó tốt như thế nào. Điểm càng thấp thì mô hình càng tốt. Nó có thể được thực hiện với sự trợ giúp của tập lệnh sau:

print('\nPerplexity: ', lda_model.log_perplexity(corpus))

Đầu ra

Perplexity: -12.338664984332151

Điểm tính mạch lạc

Mô hình LDA (lda_model)chúng tôi đã tạo ở trên có thể được sử dụng để tính toán điểm mạch lạc của mô hình, tức là điểm trung bình / trung vị của điểm số tương tự từ theo cặp của các từ trong chủ đề. Nó có thể được thực hiện với sự trợ giúp của tập lệnh sau:

coherence_model_lda = CoherenceModel(
   model=lda_model, texts=data_lemmatized, dictionary=id2word, coherence='c_v'
)
coherence_lda = coherence_model_lda.get_coherence()
print('\nCoherence Score: ', coherence_lda)

Đầu ra

Coherence Score: 0.510264381411751

Hình dung các Chủ đề-Từ khoá

Mô hình LDA (lda_model)chúng tôi đã tạo ở trên có thể được sử dụng để kiểm tra các chủ đề được sản xuất và các từ khóa liên quan. Nó có thể được hình dung bằng cách sử dụngpyLDAvisgói như sau -

pyLDAvis.enable_notebook()
vis = pyLDAvis.gensim.prepare(lda_model, corpus, id2word)
vis

Đầu ra

Từ kết quả trên, bong bóng ở phía bên trái đại diện cho một chủ đề và bong bóng lớn hơn, chủ đề đó càng thịnh hành. Mô hình chủ đề sẽ tốt nếu mô hình chủ đề có các bong bóng lớn, không chồng chéo nằm rải rác khắp biểu đồ.