Gensim - Verwenden des LDA-Themenmodells

In diesem Kapitel erfahren Sie, wie Sie das Themenmodell Latent Dirichlet Allocation (LDA) verwenden.

Anzeigen von Themen im LDA-Modell

Das oben erstellte LDA-Modell (lda_model) kann verwendet werden, um die Themen aus den Dokumenten anzuzeigen. Dies kann mit Hilfe des folgenden Skripts erfolgen:

pprint(lda_model.print_topics())
doc_lda = lda_model[corpus]

Ausgabe

[
   (0, 
   '0.036*"go" + 0.027*"get" + 0.021*"time" + 0.017*"back" + 0.015*"good" + '
   '0.014*"much" + 0.014*"be" + 0.013*"car" + 0.013*"well" + 0.013*"year"'),
   (1,
   '0.078*"screen" + 0.067*"video" + 0.052*"character" + 0.046*"normal" + '
   '0.045*"mouse" + 0.034*"manager" + 0.034*"disease" + 0.031*"processor" + '
   '0.028*"excuse" + 0.028*"choice"'),
   (2,
   '0.776*"ax" + 0.079*"_" + 0.011*"boy" + 0.008*"ticket" + 0.006*"red" + '
   '0.004*"conservative" + 0.004*"cult" + 0.004*"amazing" + 0.003*"runner" + '
   '0.003*"roughly"'),
   (3,
   '0.086*"season" + 0.078*"fan" + 0.072*"reality" + 0.065*"trade" + '
   '0.045*"concept" + 0.040*"pen" + 0.028*"blow" + 0.025*"improve" + '
   '0.025*"cap" + 0.021*"penguin"'),
   (4,
   '0.027*"group" + 0.023*"issue" + 0.016*"case" + 0.016*"cause" + '
   '0.014*"state" + 0.012*"whole" + 0.012*"support" + 0.011*"government" + '
   '0.010*"year" + 0.010*"rate"'),
   (5,
   '0.133*"evidence" + 0.047*"believe" + 0.044*"religion" + 0.042*"belief" + '
   '0.041*"sense" + 0.041*"discussion" + 0.034*"atheist" + 0.030*"conclusion" +
   '
   '0.029*"explain" + 0.029*"claim"'),
   (6,
   '0.083*"space" + 0.059*"science" + 0.031*"launch" + 0.030*"earth" + '
   '0.026*"route" + 0.024*"orbit" + 0.024*"scientific" + 0.021*"mission" + '
   '0.018*"plane" + 0.017*"satellite"'),
   (7,
   '0.065*"file" + 0.064*"program" + 0.048*"card" + 0.041*"window" + '
   '0.038*"driver" + 0.037*"software" + 0.034*"run" + 0.029*"machine" + '
   '0.029*"entry" + 0.028*"version"'),
   (8,
   '0.078*"publish" + 0.059*"mount" + 0.050*"turkish" + 0.043*"armenian" + '
   '0.027*"western" + 0.026*"russian" + 0.025*"locate" + 0.024*"proceed" + '
   '0.024*"electrical" + 0.022*"terrorism"'),
   (9,
   '0.023*"people" + 0.023*"child" + 0.021*"kill" + 0.020*"man" + 0.019*"death" '
   '+ 0.015*"die" + 0.015*"live" + 0.014*"attack" + 0.013*"age" + '
   '0.011*"church"'),
   (10,
   '0.092*"cpu" + 0.085*"black" + 0.071*"controller" + 0.039*"white" + '
   '0.028*"water" + 0.027*"cold" + 0.025*"solid" + 0.024*"cool" + 0.024*"heat" '
   '+ 0.023*"nuclear"'),
   (11,
   '0.071*"monitor" + 0.044*"box" + 0.042*"option" + 0.041*"generate" + '
   '0.038*"vote" + 0.032*"battery" + 0.029*"wave" + 0.026*"tradition" + '
   '0.026*"fairly" + 0.025*"task"'),
   (12,
   '0.048*"send" + 0.045*"mail" + 0.036*"list" + 0.033*"include" + '
   '0.032*"price" + 0.031*"address" + 0.027*"email" + 0.026*"receive" + '
   '0.024*"book" + 0.024*"sell"'),
   (13,
   '0.515*"drive" + 0.052*"laboratory" + 0.042*"blind" + 0.020*"investment" + '
   '0.011*"creature" + 0.010*"loop" + 0.005*"dialog" + 0.000*"slave" + '
   '0.000*"jumper" + 0.000*"sector"'),
   (14,
   '0.153*"patient" + 0.066*"treatment" + 0.062*"printer" + 0.059*"doctor" + '

   '0.036*"medical" + 0.031*"energy" + 0.029*"study" + 0.029*"probe" + '
   '0.024*"mph" + 0.020*"physician"'),
   (15,
   '0.068*"law" + 0.055*"gun" + 0.039*"government" + 0.036*"right" + '
   '0.029*"state" + 0.026*"drug" + 0.022*"crime" + 0.019*"person" + '
   '0.019*"citizen" + 0.019*"weapon"'),
   (16,
   '0.107*"team" + 0.102*"game" + 0.078*"play" + 0.055*"win" + 0.052*"player" + '
   '0.051*"year" + 0.030*"score" + 0.025*"goal" + 0.023*"wing" + 0.023*"run"'),
   (17,
   '0.031*"say" + 0.026*"think" + 0.022*"people" + 0.020*"make" + 0.017*"see" + '
   '0.016*"know" + 0.013*"come" + 0.013*"even" + 0.013*"thing" + 0.013*"give"'),
   (18,
   '0.039*"system" + 0.034*"use" + 0.023*"key" + 0.016*"bit" + 0.016*"also" + '
   '0.015*"information" + 0.014*"source" + 0.013*"chip" + 0.013*"available" + '
   '0.010*"provide"'),
   (19,
   '0.085*"line" + 0.073*"write" + 0.053*"article" + 0.046*"organization" + '
   '0.034*"host" + 0.023*"be" + 0.023*"know" + 0.017*"thank" + 0.016*"want" + '
   '0.014*"help"')
]

Rechenmodell Ratlosigkeit

Das oben erstellte LDA-Modell (lda_model) kann verwendet werden, um die Ratlosigkeit des Modells zu berechnen, dh wie gut das Modell ist. Je niedriger die Punktzahl, desto besser wird das Modell. Dies kann mit Hilfe des folgenden Skripts erfolgen:

print('\nPerplexity: ', lda_model.log_perplexity(corpus))

Ausgabe

Perplexity: -12.338664984332151

Berechnung des Kohärenzwerts

Das LDA-Modell (lda_model)Wir haben oben erstellt, dass der Kohärenzwert des Modells berechnet werden kann, dh der Durchschnitt / Median der paarweisen Wortähnlichkeitswerte der Wörter im Thema. Dies kann mit Hilfe des folgenden Skripts erfolgen:

coherence_model_lda = CoherenceModel(
   model=lda_model, texts=data_lemmatized, dictionary=id2word, coherence='c_v'
)
coherence_lda = coherence_model_lda.get_coherence()
print('\nCoherence Score: ', coherence_lda)

Ausgabe

Coherence Score: 0.510264381411751

Visualisierung der Topics-Keywords

Das LDA-Modell (lda_model)Wir haben oben erstellt, um die produzierten Themen und die zugehörigen Schlüsselwörter zu untersuchen. Es kann mit visualisiert werdenpyLDAvisPaket wie folgt -

pyLDAvis.enable_notebook()
vis = pyLDAvis.gensim.prepare(lda_model, corpus, id2word)
vis

Ausgabe

Aus der obigen Ausgabe geht hervor, dass die Blasen auf der linken Seite ein Thema darstellen. Je größer die Blase, desto häufiger ist dieses Thema. Das Themenmodell ist gut, wenn das Themenmodell große, nicht überlappende Blasen im Diagramm verteilt hat.