Python Pandas - Mengindeks dan Memilih Data

Pada bab ini, kita akan membahas cara mengiris dan memotong tanggal dan umumnya mendapatkan subset dari objek panda.

Operator pengindeksan Python dan NumPy "[]" dan operator atribut "." menyediakan akses cepat dan mudah ke struktur data Pandas di berbagai kasus penggunaan. Namun, karena jenis data yang akan diakses tidak diketahui sebelumnya, secara langsung menggunakan operator standar memiliki beberapa batasan pengoptimalan. Untuk kode produksi, kami menyarankan Anda untuk memanfaatkan metode akses data pandas yang dioptimalkan yang dijelaskan dalam bab ini.

Panda sekarang mendukung tiga jenis pengindeksan Multi-sumbu; ketiga jenis tersebut disebutkan dalam tabel berikut -

Sr Tidak Pengindeksan & Deskripsi
1

.loc()

Berbasis label

2

.iloc()

Berbasis bilangan bulat

3

.ix()

Berbasis Label dan Integer

.loc ()

Panda menyediakan berbagai metode untuk dimiliki secara murni label based indexing. Saat mengiris, batas awal juga disertakan. Bilangan bulat adalah label yang valid, tetapi mereka mengacu pada label dan bukan posisinya.

.loc() memiliki beberapa metode akses seperti -

  • Label skalar tunggal
  • Daftar label
  • Objek potongan
  • Array Boolean

locmengambil dua operator tunggal / daftar / rentang yang dipisahkan oleh ','. Yang pertama menunjukkan baris dan yang kedua menunjukkan kolom.

Contoh 1

#import the pandas library and aliasing as pd
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])

#select all rows for a specific column
print df.loc[:,'A']

Nya output adalah sebagai berikut -

a   0.391548
b  -0.070649
c  -0.317212
d  -2.162406
e   2.202797
f   0.613709
g   1.050559
h   1.122680
Name: A, dtype: float64

Contoh 2

# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])

# Select all rows for multiple columns, say list[]
print df.loc[:,['A','C']]

Nya output adalah sebagai berikut -

A           C
a    0.391548    0.745623
b   -0.070649    1.620406
c   -0.317212    1.448365
d   -2.162406   -0.873557
e    2.202797    0.528067
f    0.613709    0.286414
g    1.050559    0.216526
h    1.122680   -1.621420

Contoh 3

# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])

# Select few rows for multiple columns, say list[]
print df.loc[['a','b','f','h'],['A','C']]

Nya output adalah sebagai berikut -

A          C
a   0.391548   0.745623
b  -0.070649   1.620406
f   0.613709   0.286414
h   1.122680  -1.621420

Contoh 4

# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])

# Select range of rows for all columns
print df.loc['a':'h']

Nya output adalah sebagai berikut -

A           B          C          D
a    0.391548   -0.224297   0.745623   0.054301
b   -0.070649   -0.880130   1.620406   1.419743
c   -0.317212   -1.929698   1.448365   0.616899
d   -2.162406    0.614256  -0.873557   1.093958
e    2.202797   -2.315915   0.528067   0.612482
f    0.613709   -0.157674   0.286414  -0.500517
g    1.050559   -2.272099   0.216526   0.928449
h    1.122680    0.324368  -1.621420  -0.741470

Contoh 5

# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])

# for getting values with a boolean array
print df.loc['a']>0

Nya output adalah sebagai berikut -

A  False
B  True
C  False
D  False
Name: a, dtype: bool

.iloc ()

Pandas menyediakan berbagai metode untuk mendapatkan pengindeksan berbasis integer murni. Seperti python dan numpy, ini adalah0-based pengindeksan.

Berbagai metode akses adalah sebagai berikut -

  • Sebuah Integer
  • Daftar bilangan bulat
  • Rentang nilai

Contoh 1

# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])

# select all rows for a specific column
print df.iloc[:4]

Nya output adalah sebagai berikut -

A          B           C           D
0   0.699435   0.256239   -1.270702   -0.645195
1  -0.685354   0.890791   -0.813012    0.631615
2  -0.783192  -0.531378    0.025070    0.230806
3   0.539042  -1.284314    0.826977   -0.026251

Contoh 2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])

# Integer slicing
print df.iloc[:4]
print df.iloc[1:5, 2:4]

Nya output adalah sebagai berikut -

A          B           C           D
0   0.699435   0.256239   -1.270702   -0.645195
1  -0.685354   0.890791   -0.813012    0.631615
2  -0.783192  -0.531378    0.025070    0.230806
3   0.539042  -1.284314    0.826977   -0.026251

           C          D
1  -0.813012   0.631615
2   0.025070   0.230806
3   0.826977  -0.026251
4   1.423332   1.130568

Contoh 3

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])

# Slicing through list of values
print df.iloc[[1, 3, 5], [1, 3]]
print df.iloc[1:3, :]
print df.iloc[:,1:3]

Nya output adalah sebagai berikut -

B           D
1   0.890791    0.631615
3  -1.284314   -0.026251
5  -0.512888   -0.518930

           A           B           C           D
1  -0.685354    0.890791   -0.813012    0.631615
2  -0.783192   -0.531378    0.025070    0.230806

           B           C
0   0.256239   -1.270702
1   0.890791   -0.813012
2  -0.531378    0.025070
3  -1.284314    0.826977
4  -0.460729    1.423332
5  -0.512888    0.581409
6  -1.204853    0.098060
7  -0.947857    0.641358

.ix ()

Selain berbasis label murni dan berbasis integer, Pandas menyediakan metode hybrid untuk pemilihan dan subset objek menggunakan operator .ix ().

Contoh 1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])

# Integer slicing
print df.ix[:4]

Nya output adalah sebagai berikut -

A          B           C           D
0   0.699435   0.256239   -1.270702   -0.645195
1  -0.685354   0.890791   -0.813012    0.631615
2  -0.783192  -0.531378    0.025070    0.230806
3   0.539042  -1.284314    0.826977   -0.026251

Contoh 2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
# Index slicing
print df.ix[:,'A']

Nya output adalah sebagai berikut -

0   0.699435
1  -0.685354
2  -0.783192
3   0.539042
4  -1.044209
5  -1.415411
6   1.062095
7   0.994204
Name: A, dtype: float64

Penggunaan Notasi

Mendapatkan nilai dari objek Pandas dengan pengindeksan Multi-sumbu menggunakan notasi berikut -

Obyek Pengindeks Jenis Pengembalian
Seri s.loc [pengindeks] Nilai skalar
DataFrame dll Objek seri
Panel p.loc [indeks_ item, indeks_besar, indeks_besar] p.loc [indeks_ item, indeks_besar, indeks_besar]

Note − .iloc() & .ix() menerapkan opsi pengindeksan dan nilai Return yang sama.

Sekarang mari kita lihat bagaimana setiap operasi dapat dilakukan pada objek DataFrame. Kami akan menggunakan operator pengindeksan dasar '[]' -

Contoh 1

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print df['A']

Nya output adalah sebagai berikut -

0  -0.478893
1   0.391931
2   0.336825
3  -1.055102
4  -0.165218
5  -0.328641
6   0.567721
7  -0.759399
Name: A, dtype: float64

Note - Kita dapat memberikan daftar nilai ke [] untuk memilih kolom tersebut.

Contoh 2

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])

print df[['A','B']]

Nya output adalah sebagai berikut -

A           B
0  -0.478893   -0.606311
1   0.391931   -0.949025
2   0.336825    0.093717
3  -1.055102   -0.012944
4  -0.165218    1.550310
5  -0.328641   -0.226363
6   0.567721   -0.312585
7  -0.759399   -0.372696

Contoh 3

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print df[2:2]

Nya output adalah sebagai berikut -

Columns: [A, B, C, D]
Index: []

Akses Atribut

Kolom dapat dipilih menggunakan operator atribut '.'.

Contoh

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])

print df.A

Nya output adalah sebagai berikut -

0   -0.478893
1    0.391931
2    0.336825
3   -1.055102
4   -0.165218
5   -0.328641
6    0.567721
7   -0.759399
Name: A, dtype: float64