Gensim - Tworzenie modelu tematycznego LSI i HDP
Ten rozdział dotyczy tworzenia modelu tematycznego utajonego indeksowania semantycznego (LSI) i hierarchicznego procesu Dirichleta (HDP) w odniesieniu do Gensim.
Algorytmy modelowania tematu, które zostały po raz pierwszy zaimplementowane w Gensim z Latent Dirichlet Allocation (LDA) to Latent Semantic Indexing (LSI). Nazywa się to równieżLatent Semantic Analysis (LSA). Został opatentowany w 1988 roku przez Scotta Deerwestera, Susan Dumais, George'a Furnasa, Richarda Harshmana, Thomasa Landaura, Karen Lochbaum i Lynn Streeter.
W tej sekcji mamy zamiar skonfigurować nasz model LSI. Można to zrobić w ten sam sposób, jak konfigurując model LDA. Musimy zaimportować model LSI zgensim.models.
Rola LSI
W rzeczywistości LSI jest techniką NLP, zwłaszcza w semantyce dystrybucyjnej. Analizuje związek między zbiorem dokumentów a terminami, które te dokumenty zawierają. Jeśli mówimy o jego działaniu, konstruuje on macierz zawierającą liczbę słów w dokumencie z dużego fragmentu tekstu.
Po skonstruowaniu, w celu zmniejszenia liczby wierszy, model LSI wykorzystuje technikę matematyczną zwaną dekompozycją wartości osobliwej (SVD). Wraz ze zmniejszeniem liczby wierszy zachowuje również strukturę podobieństwa między kolumnami.
W macierzy wiersze reprezentują unikalne słowa, a kolumny reprezentują każdy dokument. Działa w oparciu o hipotezę dystrybucyjną, tj. Zakłada, że słowa bliskie znaczenia będą występować w tym samym rodzaju tekstu.
Wdrożenie z Gensim
Tutaj użyjemy LSI (Latent Semantic Indexing), aby wyodrębnić naturalnie omówione tematy ze zbioru danych.
Ładowanie zestawu danych
Zbiór danych, którego będziemy używać, to zbiór danych ’20 Newsgroups’posiadanie tysięcy artykułów z różnych sekcji raportu prasowego. Jest dostępny w ramachSklearnzbiory danych. Możemy łatwo pobrać za pomocą następującego skryptu Pythona -
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
Przyjrzyjmy się niektórym przykładowym wiadomościom za pomocą następującego skryptu -
newsgroups_train.data[:4]
["From: [email protected] (where's my thing)\nSubject:
WHAT car is this!?\nNntp-Posting-Host: rac3.wam.umd.edu\nOrganization:
University of Maryland, College Park\nLines: 15\n\n
I was wondering if anyone out there could enlighten me on this car
I saw\nthe other day. It was a 2-door sports car,
looked to be from the late 60s/\nearly 70s. It was called a Bricklin.
The doors were really small. In addition,\nthe front bumper was separate from
the rest of the body. This is \nall I know. If anyone can tellme a model name,
engine specs, years\nof production, where this car is made, history, or
whatever info you\nhave on this funky looking car,
please e-mail.\n\nThanks,\n- IL\n ---- brought to you by your neighborhood
Lerxst ----\n\n\n\n\n",
"From: [email protected] (Guy Kuo)\nSubject:
SI Clock Poll - Final Call\nSummary: Final call for SI clock reports\nKeywords:
SI,acceleration,clock,upgrade\nArticle-I.D.: shelley.1qvfo9INNc3s\nOrganization:
University of Washington\nLines: 11\nNNTP-Posting-Host: carson.u.washington.edu\n\nA
fair number of brave souls who upgraded their SI clock oscillator have\nshared their
experiences for this poll. Please send a brief message detailing\nyour experiences with
the procedure. Top speed attained, CPU rated speed,\nadd on cards and adapters, heat
sinks, hour of usage per day, floppy disk\nfunctionality with 800 and 1.4 m floppies
are especially requested.\n\nI will be summarizing in the next two days, so please add
to the network\nknowledge base if you have done the clock upgrade and haven't answered
this\npoll. Thanks.\n\nGuy Kuo <[email protected]>\n",
'From: [email protected] (Thomas E Willis)\nSubject:
PB questions...\nOrganization: Purdue University Engineering Computer
Network\nDistribution: usa\nLines: 36\n\nwell folks, my mac plus finally gave up the
ghost this weekend after\nstarting life as a 512k way back in 1985. sooo, i\'m in the
market for a\nnew machine a bit sooner than i intended to be...\n\ni\'m looking into
picking up a powerbook 160 or maybe 180 and have a bunch\nof questions that (hopefully)
somebody can answer:\n\n* does anybody know any dirt on when the next round of
powerbook\nintroductions are expected? i\'d heard the 185c was supposed to make
an\nappearence "this summer" but haven\'t heard anymore on it - and since i\ndon\'t
have access to macleak, i was wondering if anybody out there had\nmore info...\n\n* has
anybody heard rumors about price drops to the powerbook line like the\nones the duo\'s
just went through recently?\n\n* what\'s the impression of the display on the 180? i
could probably swing\na 180 if i got the 80Mb disk rather than the 120, but i don\'t
really have\na feel for how much "better" the display is (yea, it looks great in
the\nstore, but is that all "wow" or is it really that good?). could i solicit\nsome
opinions of people who use the 160 and 180 day-to-day on if its worth\ntaking the disk
size and money hit to get the active display? (i realize\nthis is a real subjective
question, but i\'ve only played around with the\nmachines in a computer store breifly
and figured the opinions of somebody\nwho actually uses the machine daily might prove
helpful).\n\n* how well does hellcats perform? ;)\n\nthanks a bunch in advance for any
info - if you could email, i\'ll post a\nsummary (news reading time is at a premium
with finals just around the\ncorner... :( )\n--\nTom Willis \\ [email protected]
\\ Purdue Electrical
Engineering\n---------------------------------------------------------------------------\
n"Convictions are more dangerous enemies of truth than lies." - F. W.\nNietzsche\n',
'From: jgreen@amber (Joe Green)\nSubject: Re: Weitek P9000 ?\nOrganization: Harris
Computer Systems Division\nLines: 14\nDistribution: world\nNNTP-Posting-Host:
amber.ssd.csd.harris.com\nX-Newsreader: TIN [version 1.1 PL9]\n\nRobert J.C. Kyanko
([email protected]) wrote:\n > [email protected] writes in article <
[email protected]>:\n> > Anyone know about the Weitek P9000
graphics chip?\n > As far as the low-level stuff goes, it looks pretty nice. It\'s
got this\n > quadrilateral fill command that requires just the four
points.\n\nDo you have Weitek\'s address/phone number? I\'d like to get some
information\nabout this chip.\n\n--\nJoe Green\t\t\t\tHarris
Corporation\[email protected]\t\t\tComputer Systems Division\n"The only thing that
really scares me is a person with no sense of humor."\n\t\t\t\t\t\t-- Jonathan
Winters\n']
Warunek wstępny
Potrzebujemy stopwords z NLTK i angielskiego modelu firmy Scapy. Oba można pobrać w następujący sposób -
import nltk;
nltk.download('stopwords')
nlp = spacy.load('en_core_web_md', disable=['parser', 'ner'])
Importowanie niezbędnych pakietów
Aby zbudować model LSI musimy zaimportować następujący pakiet -
import re
import numpy as np
import pandas as pd
from pprint import pprint
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel
import spacy
import matplotlib.pyplot as plt
Przygotowywanie odrzucanych słów
Teraz musimy zaimportować stopwords i użyć ich -
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
stop_words.extend(['from', 'subject', 're', 'edu', 'use'])
Oczyść tekst
Teraz z pomocą Gensima simple_preprocess()musimy ująć każde zdanie w listę słów. Powinniśmy również usunąć znaki interpunkcyjne i niepotrzebne znaki. W tym celu stworzymy funkcję o nazwiesent_to_words() -
def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True))
data_words = list(sent_to_words(data))
Budowanie modeli Bigram i Trigram
Jak wiemy, bigramy to dwa słowa, które często występują razem w dokumencie, a trygram to trzy słowa, które często występują razem w dokumencie. Z pomocą modelu wyrażeń Gensima możemy to zrobić -
bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100)
trigram = gensim.models.Phrases(bigram[data_words], threshold=100)
bigram_mod = gensim.models.phrases.Phraser(bigram)
trigram_mod = gensim.models.phrases.Phraser(trigram)
Odfiltruj odrzucane słowa
Następnie musimy odfiltrować odrzucane słowa. Oprócz tego stworzymy również funkcje do tworzenia bigramów, trygramów i do lematyzacji -
def remove_stopwords(texts):
return [[word for word in simple_preprocess(str(doc))
if word not in stop_words] for doc in texts]
def make_bigrams(texts):
return [bigram_mod[doc] for doc in texts]
def make_trigrams(texts):
return [trigram_mod[bigram_mod[doc]] for doc in texts]
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
Tworzenie słownika i korpusu dla modelu tematycznego
Teraz musimy zbudować słownik i korpus. Zrobiliśmy to również w poprzednich przykładach -
id2word = corpora.Dictionary(data_lemmatized)
texts = data_lemmatized
corpus = [id2word.doc2bow(text) for text in texts]
Budowanie modelu tematycznego LSI
Wdrożyliśmy już wszystko, co jest wymagane do trenowania modelu LSI. Nadszedł czas, aby zbudować model tematyczny LSI. W naszym przykładzie implementacji można to zrobić za pomocą następującego wiersza kodów -
lsi_model = gensim.models.lsimodel.LsiModel(
corpus=corpus, id2word=id2word, num_topics=20,chunksize=100
)
Przykład implementacji
Zobaczmy pełny przykład implementacji, aby zbudować model tematu LDA -
import re
import numpy as np
import pandas as pd
from pprint import pprint
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel
import spacy
import matplotlib.pyplot as plt
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
stop_words.extend(['from', 'subject', 're', 'edu', 'use'])
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
data = newsgroups_train.data
data = [re.sub('\S*@\S*\s?', '', sent) for sent in data]
data = [re.sub('\s+', ' ', sent) for sent in data]
data = [re.sub("\'", "", sent) for sent in data]
print(data_words[:4]) #it will print the data after prepared for stopwords
bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100)
trigram = gensim.models.Phrases(bigram[data_words], threshold=100)
bigram_mod = gensim.models.phrases.Phraser(bigram)
trigram_mod = gensim.models.phrases.Phraser(trigram)
def remove_stopwords(texts):
return [[word for word in simple_preprocess(str(doc))
if word not in stop_words] for doc in texts]
def make_bigrams(texts):
return [bigram_mod[doc] for doc in texts]
def make_trigrams(texts):
return [trigram_mod[bigram_mod[doc]] for doc in texts]
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
data_words_nostops = remove_stopwords(data_words)
data_words_bigrams = make_bigrams(data_words_nostops)
nlp = spacy.load('en_core_web_md', disable=['parser', 'ner'])
data_lemmatized = lemmatization(
data_words_bigrams, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']
)
print(data_lemmatized[:4]) #it will print the lemmatized data.
id2word = corpora.Dictionary(data_lemmatized)
texts = data_lemmatized
corpus = [id2word.doc2bow(text) for text in texts]
print(corpus[:4]) #it will print the corpus we created above.
[[(id2word[id], freq) for id, freq in cp] for cp in corpus[:4]]
#it will print the words with their frequencies.
lsi_model = gensim.models.lsimodel.LsiModel(
corpus=corpus, id2word=id2word, num_topics=20,chunksize=100
)
Możemy teraz użyć utworzonego powyżej modelu LSI, aby uzyskać tematy.
Przeglądanie tematów w modelu LSI
Model LSI (lsi_model)utworzone powyżej mogą być używane do przeglądania tematów z dokumentów. Można to zrobić za pomocą następującego skryptu -
pprint(lsi_model.print_topics())
doc_lsi = lsi_model[corpus]
Wynik
[
(0,
'1.000*"ax" + 0.001*"_" + 0.000*"tm" + 0.000*"part" + 0.000*"pne" + '
'0.000*"biz" + 0.000*"mbs" + 0.000*"end" + 0.000*"fax" + 0.000*"mb"'),
(1,
'0.239*"say" + 0.222*"file" + 0.189*"go" + 0.171*"know" + 0.169*"people" + '
'0.147*"make" + 0.140*"use" + 0.135*"also" + 0.133*"see" + 0.123*"think"')
]
Hierarchiczny proces Dirichleta (HPD)
Modele tematyczne, takie jak LDA i LSI, pomagają w podsumowywaniu i organizowaniu dużych archiwów tekstów, których nie można przeanalizować ręcznie. Oprócz LDA i LSI, innym potężnym modelem tematycznym w Gensim jest HDP (Hierarchical Dirichlet Process). Jest to w zasadzie model członkostwa mieszanego do nienadzorowanej analizy zgrupowanych danych. W przeciwieństwie do LDA (jej skończony odpowiednik), HDP wnioskuje liczbę tematów na podstawie danych.
Wdrożenie z Gensim
Aby zaimplementować HDP w Gensim, musimy wyszkolić korpus i słownik (tak jak w powyższych przykładach podczas implementacji modeli tematycznych LDA i LSI) Model tematu HDP, który możemy zaimportować z gensim.models.HdpModel. Tutaj również zaimplementujemy model tematu HDP na danych 20Newsgroup, a kroki również będą takie same.
Dla naszego korpusu i słownika (utworzonego w powyższych przykładach dla modelu LSI i LDA) możemy zaimportować HdpModel w następujący sposób -
Hdp_model = gensim.models.hdpmodel.HdpModel(corpus=corpus, id2word=id2word)
Przeglądanie tematów w modelu LSI
Model HDP (Hdp_model)można użyć do przeglądania tematów z dokumentów. Można to zrobić za pomocą następującego skryptu -
pprint(Hdp_model.print_topics())
Wynik
[
(0,
'0.009*line + 0.009*write + 0.006*say + 0.006*article + 0.006*know + '
'0.006*people + 0.005*make + 0.005*go + 0.005*think + 0.005*be'),
(1,
'0.016*line + 0.011*write + 0.008*article + 0.008*organization + 0.006*know '
'+ 0.006*host + 0.006*be + 0.005*get + 0.005*use + 0.005*say'),
(2,
'0.810*ax + 0.001*_ + 0.000*tm + 0.000*part + 0.000*mb + 0.000*pne + '
'0.000*biz + 0.000*end + 0.000*wwiz + 0.000*fax'),
(3,
'0.015*line + 0.008*write + 0.007*organization + 0.006*host + 0.006*know + '
'0.006*article + 0.005*use + 0.005*thank + 0.004*get + 0.004*problem'),
(4,
'0.004*line + 0.003*write + 0.002*believe + 0.002*think + 0.002*article + '
'0.002*belief + 0.002*say + 0.002*see + 0.002*look + 0.002*organization'),
(5,
'0.005*line + 0.003*write + 0.003*organization + 0.002*article + 0.002*time '
'+ 0.002*host + 0.002*get + 0.002*look + 0.002*say + 0.001*number'),
(6,
'0.003*line + 0.002*say + 0.002*write + 0.002*go + 0.002*gun + 0.002*get + '
'0.002*organization + 0.002*bill + 0.002*article + 0.002*state'),
(7,
'0.003*line + 0.002*write + 0.002*article + 0.002*organization + 0.001*none '
'+ 0.001*know + 0.001*say + 0.001*people + 0.001*host + 0.001*new'),
(8,
'0.004*line + 0.002*write + 0.002*get + 0.002*team + 0.002*organization + '
'0.002*go + 0.002*think + 0.002*know + 0.002*article + 0.001*well'),
(9,
'0.004*line + 0.002*organization + 0.002*write + 0.001*be + 0.001*host + '
'0.001*article + 0.001*thank + 0.001*use + 0.001*work + 0.001*run'),
(10,
'0.002*line + 0.001*game + 0.001*write + 0.001*get + 0.001*know + '
'0.001*thing + 0.001*think + 0.001*article + 0.001*help + 0.001*turn'),
(11,
'0.002*line + 0.001*write + 0.001*game + 0.001*organization + 0.001*say + '
'0.001*host + 0.001*give + 0.001*run + 0.001*article + 0.001*get'),
(12,
'0.002*line + 0.001*write + 0.001*know + 0.001*time + 0.001*article + '
'0.001*get + 0.001*think + 0.001*organization + 0.001*scope + 0.001*make'),
(13,
'0.002*line + 0.002*write + 0.001*article + 0.001*organization + 0.001*make '
'+ 0.001*know + 0.001*see + 0.001*get + 0.001*host + 0.001*really'),
(14,
'0.002*write + 0.002*line + 0.002*know + 0.001*think + 0.001*say + '
'0.001*article + 0.001*argument + 0.001*even + 0.001*card + 0.001*be'),
(15,
'0.001*article + 0.001*line + 0.001*make + 0.001*write + 0.001*know + '
'0.001*say + 0.001*exist + 0.001*get + 0.001*purpose + 0.001*organization'),
(16,
'0.002*line + 0.001*write + 0.001*article + 0.001*insurance + 0.001*go + '
'0.001*be + 0.001*host + 0.001*say + 0.001*organization + 0.001*part'),
(17,
'0.001*line + 0.001*get + 0.001*hit + 0.001*go + 0.001*write + 0.001*say + '
'0.001*know + 0.001*drug + 0.001*see + 0.001*need'),
(18,
'0.002*option + 0.001*line + 0.001*flight + 0.001*power + 0.001*software + '
'0.001*write + 0.001*add + 0.001*people + 0.001*organization + 0.001*module'),
(19,
'0.001*shuttle + 0.001*line + 0.001*roll + 0.001*attitude + 0.001*maneuver + '
'0.001*mission + 0.001*also + 0.001*orbit + 0.001*produce + 0.001*frequency')
]