NumPy - funkcje matematyczne
Całkiem zrozumiałe, że NumPy zawiera wiele różnych operacji matematycznych. NumPy zapewnia standardowe funkcje trygonometryczne, funkcje do operacji arytmetycznych, obsługi liczb zespolonych itp.
Funkcje trygonometryczne
NumPy ma standardowe funkcje trygonometryczne, które zwracają stosunki trygonometryczne dla danego kąta w radianach.
Example
import numpy as np
a = np.array([0,30,45,60,90])
print 'Sine of different angles:'
# Convert to radians by multiplying with pi/180
print np.sin(a*np.pi/180)
print '\n'
print 'Cosine values for angles in array:'
print np.cos(a*np.pi/180)
print '\n'
print 'Tangent values for given angles:'
print np.tan(a*np.pi/180)
Oto jego wynik -
Sine of different angles:
[ 0. 0.5 0.70710678 0.8660254 1. ]
Cosine values for angles in array:
[ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
6.12323400e-17]
Tangent values for given angles:
[ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
1.63312394e+16]
arcsin, arcos, i arctanfunkcje zwracają trygonometryczną odwrotność sin, cos i tan dla danego kąta. Wynik tych funkcji można zweryfikować za pomocąnumpy.degrees() function poprzez zamianę radianów na stopnie.
Example
import numpy as np
a = np.array([0,30,45,60,90])
print 'Array containing sine values:'
sin = np.sin(a*np.pi/180)
print sin
print '\n'
print 'Compute sine inverse of angles. Returned values are in radians.'
inv = np.arcsin(sin)
print inv
print '\n'
print 'Check result by converting to degrees:'
print np.degrees(inv)
print '\n'
print 'arccos and arctan functions behave similarly:'
cos = np.cos(a*np.pi/180)
print cos
print '\n'
print 'Inverse of cos:'
inv = np.arccos(cos)
print inv
print '\n'
print 'In degrees:'
print np.degrees(inv)
print '\n'
print 'Tan function:'
tan = np.tan(a*np.pi/180)
print tan
print '\n'
print 'Inverse of tan:'
inv = np.arctan(tan)
print inv
print '\n'
print 'In degrees:'
print np.degrees(inv)
Jego wynik jest następujący -
Array containing sine values:
[ 0. 0.5 0.70710678 0.8660254 1. ]
Compute sine inverse of angles. Returned values are in radians.
[ 0. 0.52359878 0.78539816 1.04719755 1.57079633]
Check result by converting to degrees:
[ 0. 30. 45. 60. 90.]
arccos and arctan functions behave similarly:
[ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
6.12323400e-17]
Inverse of cos:
[ 0. 0.52359878 0.78539816 1.04719755 1.57079633]
In degrees:
[ 0. 30. 45. 60. 90.]
Tan function:
[ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
1.63312394e+16]
Inverse of tan:
[ 0. 0.52359878 0.78539816 1.04719755 1.57079633]
In degrees:
[ 0. 30. 45. 60. 90.]
Funkcje zaokrąglania
numpy.around ()
Jest to funkcja zwracająca wartość zaokrągloną do żądanej dokładności. Funkcja przyjmuje następujące parametry.
numpy.around(a,decimals)
Gdzie,
Sr.No. | Parametr i opis |
---|---|
1 | a Dane wejściowe |
2 | decimals Liczba miejsc dziesiętnych do zaokrąglenia. Wartość domyślna to 0. Jeśli jest ujemna, liczba całkowita jest zaokrąglana do pozycji po lewej stronie przecinka dziesiętnego |
Example
import numpy as np
a = np.array([1.0,5.55, 123, 0.567, 25.532])
print 'Original array:'
print a
print '\n'
print 'After rounding:'
print np.around(a)
print np.around(a, decimals = 1)
print np.around(a, decimals = -1)
Generuje następujący wynik -
Original array:
[ 1. 5.55 123. 0.567 25.532]
After rounding:
[ 1. 6. 123. 1. 26. ]
[ 1. 5.6 123. 0.6 25.5]
[ 0. 10. 120. 0. 30. ]
numpy.floor ()
Ta funkcja zwraca największą liczbę całkowitą nie większą niż parametr wejściowy. Podłogascalar x jest największy integer i, takie że i <= x. Zauważ, że w Pythonie podłoga jest zawsze zaokrąglana od 0.
Example
import numpy as np
a = np.array([-1.7, 1.5, -0.2, 0.6, 10])
print 'The given array:'
print a
print '\n'
print 'The modified array:'
print np.floor(a)
Generuje następujący wynik -
The given array:
[ -1.7 1.5 -0.2 0.6 10. ]
The modified array:
[ -2. 1. -1. 0. 10.]
numpy.ceil ()
Funkcja ceil () zwraca górną granicę wartości wejściowej, tj. Pułap wartości scalar x jest najmniejszy integer i, takie że i >= x.
Example
import numpy as np
a = np.array([-1.7, 1.5, -0.2, 0.6, 10])
print 'The given array:'
print a
print '\n'
print 'The modified array:'
print np.ceil(a)
Wytworzy następujący wynik -
The given array:
[ -1.7 1.5 -0.2 0.6 10. ]
The modified array:
[ -1. 2. -0. 1. 10.]