Gensim - Criando Modelo de Mallet LDA
Este capítulo irá explicar o que é um modelo de Mallet Latent Dirichlet Allocation (LDA) e como criar o mesmo no Gensim.
Na seção anterior, implementamos o modelo LDA e obtemos os tópicos dos documentos do conjunto de dados 20Newsgroup. Essa era a versão embutida de Gensim do algoritmo LDA. Existe também uma versão Mallet do Gensim, que oferece melhor qualidade dos tópicos. Aqui, vamos aplicar o LDA de Mallet no exemplo anterior que já implementamos.
O que é o modelo LDA Mallet?
Mallet, um kit de ferramentas de código aberto, foi escrito por Andrew McCullum. É basicamente um pacote baseado em Java que é usado para NLP, classificação de documentos, clustering, modelagem de tópicos e muitos outros aplicativos de aprendizado de máquina para texto. Ele nos fornece o kit de ferramentas Mallet Topic Modeling, que contém implementações eficientes e baseadas em amostragem de LDA, bem como LDA hierárquica.
Mallet2.0 é a versão atual do MALLET, o kit de ferramentas de modelagem de tópicos java. Antes de começar a usá-lo com o Gensim for LDA, devemos baixar o pacote mallet-2.0.8.zip em nosso sistema e descompactá-lo. Depois de instalado e descompactado, defina a variável de ambiente% MALLET_HOME% para o ponto para o diretório MALLET manualmente ou pelo código que forneceremos, ao implementar o LDA com Mallet a seguir.
Gensim Wrapper
Python fornece wrapper Gensim para Latent Dirichlet Allocation (LDA). A sintaxe desse wrapper égensim.models.wrappers.LdaMallet. Este módulo, amostragem de gibbs recolhido do MALLET, permite a estimativa do modelo LDA a partir de um corpus de treinamento e inferência da distribuição de tópicos em documentos novos e não vistos.
Exemplo de Implementação
Usaremos o LDA Mallet no modelo LDA previamente construído e verificaremos a diferença no desempenho calculando a pontuação de Coerência.
Fornecendo o caminho para o arquivo Mallet
Antes de aplicar o modelo Mallet LDA em nosso corpus construído no exemplo anterior, devemos ter que atualizar as variáveis de ambiente e fornecer o caminho do arquivo Mallet também. Isso pode ser feito com a ajuda do seguinte código -
import os
from gensim.models.wrappers import LdaMallet
os.environ.update({'MALLET_HOME':r'C:/mallet-2.0.8/'})
#You should update this path as per the path of Mallet directory on your system.
mallet_path = r'C:/mallet-2.0.8/bin/mallet'
#You should update this path as per the path of Mallet directory on your system.
Depois de fornecer o caminho para o arquivo Mallet, podemos usá-lo no corpus. Isso pode ser feito com a ajuda deldamallet.show_topics() funcionar da seguinte forma -
ldamallet = gensim.models.wrappers.LdaMallet(
mallet_path, corpus=corpus, num_topics=20, id2word=id2word
)
pprint(ldamallet.show_topics(formatted=False))
Resultado
[
(4,
[('gun', 0.024546225966016102),
('law', 0.02181426826996709),
('state', 0.017633545129043606),
('people', 0.017612848479831116),
('case', 0.011341763768445888),
('crime', 0.010596684396796159),
('weapon', 0.00985160502514643),
('person', 0.008671896020034356),
('firearm', 0.00838214293105946),
('police', 0.008257963035784506)]),
(9,
[('make', 0.02147966482730431),
('people', 0.021377478029838543),
('work', 0.018557122419783363),
('money', 0.016676885346413244),
('year', 0.015982015123646026),
('job', 0.012221540976905783),
('pay', 0.010239117106069897),
('time', 0.008910688739014919),
('school', 0.0079092581238504),
('support', 0.007357449417535254)]),
(14,
[('power', 0.018428398507941996),
('line', 0.013784244460364121),
('high', 0.01183271164249895),
('work', 0.011560979224821522),
('ground', 0.010770484918850819),
('current', 0.010745781971789235),
('wire', 0.008399002000938712),
('low', 0.008053160742076529),
('water', 0.006966231071366814),
('run', 0.006892122230182061)]),
(0,
[('people', 0.025218349201353372),
('kill', 0.01500904870564167),
('child', 0.013612400660948935),
('armenian', 0.010307655991816822),
('woman', 0.010287984892595798),
('start', 0.01003226060272248),
('day', 0.00967818081674404),
('happen', 0.009383114328428673),
('leave', 0.009383114328428673),
('fire', 0.009009363443229208)]),
(1,
[('file', 0.030686386604212003),
('program', 0.02227713642901929),
('window', 0.01945561169918489),
('set', 0.015914874783314277),
('line', 0.013831003577619592),
('display', 0.013794120901412606),
('application', 0.012576992586582082),
('entry', 0.009275993066056873),
('change', 0.00872275292295209),
('color', 0.008612104894331132)]),
(12,
[('line', 0.07153810971508515),
('buy', 0.02975597944523662),
('organization', 0.026877236406682988),
('host', 0.025451316957679788),
('price', 0.025182275552207485),
('sell', 0.02461728860071565),
('mail', 0.02192687454599263),
('good', 0.018967419085797303),
('sale', 0.017998870026097017),
('send', 0.013694207538540181)]),
(11,
[('thing', 0.04901329901329901),
('good', 0.0376018876018876),
('make', 0.03393393393393394),
('time', 0.03326898326898327),
('bad', 0.02664092664092664),
('happen', 0.017696267696267698),
('hear', 0.015615615615615615),
('problem', 0.015465465465465466),
('back', 0.015143715143715144),
('lot', 0.01495066495066495)]),
(18,
[('space', 0.020626317374284855),
('launch', 0.00965716006366413),
('system', 0.008560244332602057),
('project', 0.008173097603991913),
('time', 0.008108573149223556),
('cost', 0.007764442723792318),
('year', 0.0076784101174345075),
('earth', 0.007484836753129436),
('base', 0.0067535595990880545),
('large', 0.006689035144319697)]),
(5,
[('government', 0.01918437232469453),
('people', 0.01461203206475212),
('state', 0.011207097828624796),
('country', 0.010214802708381975),
('israeli', 0.010039691804809714),
('war', 0.009436532025838587),
('force', 0.00858043427504086),
('attack', 0.008424780138532182),
('land', 0.0076659662230523775),
('world', 0.0075103120865437)]),
(2,
[('car', 0.041091194044470564),
('bike', 0.015598981291017729),
('ride', 0.011019688510138114),
('drive', 0.010627877363110981),
('engine', 0.009403467528651191),
('speed', 0.008081104907434616),
('turn', 0.007738270153785875),
('back', 0.007738270153785875),
('front', 0.007468899990204721),
('big', 0.007370947203447938)])
]
Avaliação de desempenho
Agora também podemos avaliar seu desempenho calculando a pontuação de coerência da seguinte forma -
ldamallet = gensim.models.wrappers.LdaMallet(
mallet_path, corpus=corpus, num_topics=20, id2word=id2word
)
pprint(ldamallet.show_topics(formatted=False))
Resultado
Coherence Score: 0.5842762900901401