Fluxo de trabalho universal de aprendizado de máquina
A Inteligência Artificial é uma tendência hoje em dia em maior medida. O aprendizado de máquina e o aprendizado profundo constituem inteligência artificial. O diagrama de Venn mencionado abaixo explica a relação entre aprendizado de máquina e aprendizado profundo.
Aprendizado de Máquina
O aprendizado de máquina é a arte da ciência que permite que os computadores atuem de acordo com os algoritmos projetados e programados. Muitos pesquisadores acreditam que o aprendizado de máquina é a melhor maneira de progredir em direção à IA de nível humano. Inclui vários tipos de padrões como -
- Padrão de Aprendizagem Supervisionada
- Padrão de aprendizagem não supervisionado
Aprendizado Profundo
Aprendizado profundo é um subcampo do aprendizado de máquina em que os algoritmos em questão são inspirados na estrutura e função do cérebro, chamados de Redes Neurais Artificiais.
O aprendizado profundo ganhou muita importância por meio do aprendizado supervisionado ou a partir de dados e algoritmos rotulados. Cada algoritmo de aprendizado profundo passa pelo mesmo processo. Inclui hierarquia de transformação não linear de entrada e usa para criar um modelo estatístico como saída.
O processo de aprendizado de máquina é definido usando as seguintes etapas -
- Identifica conjuntos de dados relevantes e os prepara para análise.
- Escolhe o tipo de algoritmo a ser usado.
- Constrói um modelo analítico com base no algoritmo usado.
- Treina o modelo em conjuntos de dados de teste, revisando-o conforme necessário.
- Executa o modelo para gerar pontuações de teste.