Seaborn - Gráficos categóricos de vários painéis

Os dados categóricos podem ser visualizados usando dois gráficos, você pode usar as funções pointplot(), ou a função de nível superior factorplot().

Factorplot

Factorplot desenha um gráfico categórico em um FacetGrid. Usando o parâmetro 'kind', podemos escolher o gráfico como boxplot, violinplot, barplot e stripplot. FacetGrid usa pointplot por padrão.

Exemplo

import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('exercise')
sb.factorplot(x = "time", y = pulse", hue = "kind",data = df);
plt.show()

Resultado

Podemos usar gráficos diferentes para visualizar os mesmos dados usando o kind parâmetro.

Exemplo

import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('exercise')
sb.factorplot(x = "time", y = "pulse", hue = "kind", kind = 'violin',data = df);
plt.show()

Resultado

No factorplot, os dados são plotados em uma grade de faceta.

O que é Facet Grid?

Facet grid forma uma matriz de painéis definidos por linha e coluna, dividindo as variáveis. Devido aos painéis, um único gráfico se parece com vários gráficos. É muito útil analisar todas as combinações em duas variáveis ​​discretas.

Vamos visualizar acima a definição com um exemplo

Exemplo

import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('exercise')
sb.factorplot(x = "time", y = "pulse", hue = "kind", kind = 'violin', col = "diet", data = df);
plt.show()

Resultado

A vantagem de usar o Facet é que podemos inserir outra variável no gráfico. O gráfico acima é dividido em dois gráficos com base em uma terceira variável chamada 'dieta' usando o parâmetro 'col'.

Podemos fazer muitas facetas de coluna e alinhá-las com as linhas da grade -

Exemplo

import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('titanic')
sb.factorplot("alive", col = "deck", col_wrap = 3,data = df[df.deck.notnull()],kind = "count")
plt.show()

resultado