Python Pandas - оконные функции

Для работы с числовыми данными Pandas предоставляет несколько вариантов, таких как вращение, расширение и экспоненциальное перемещение весов для оконной статистики. Среди нихsum, mean, median, variance, covariance, correlation, и т.п.

Теперь мы узнаем, как каждый из них можно применить к объектам DataFrame.

.rolling () Функция

Эта функция может применяться к серии данных. Укажитеwindow=n аргумент и примените к нему соответствующую статистическую функцию.

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10, 4),
   index = pd.date_range('1/1/2000', periods=10),
   columns = ['A', 'B', 'C', 'D'])
print df.rolling(window=3).mean()

это output выглядит следующим образом -

A           B           C           D
2000-01-01        NaN         NaN         NaN         NaN
2000-01-02        NaN         NaN         NaN         NaN
2000-01-03   0.434553   -0.667940   -1.051718   -0.826452
2000-01-04   0.628267   -0.047040   -0.287467   -0.161110
2000-01-05   0.398233    0.003517    0.099126   -0.405565
2000-01-06   0.641798    0.656184   -0.322728    0.428015
2000-01-07   0.188403    0.010913   -0.708645    0.160932
2000-01-08   0.188043   -0.253039   -0.818125   -0.108485
2000-01-09   0.682819   -0.606846   -0.178411   -0.404127
2000-01-10   0.688583    0.127786    0.513832   -1.067156

Note - Так как размер окна равен 3, для первых двух элементов есть нули, а с третьего значение будет средним значением n, n-1 и n-2элементы. Таким образом, мы также можем применять различные функции, упомянутые выше.

.expanding () Функция

Эта функция может применяться к серии данных. Укажитеmin_periods=n аргумент и примените к нему соответствующую статистическую функцию.

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10, 4),
   index = pd.date_range('1/1/2000', periods=10),
   columns = ['A', 'B', 'C', 'D'])
print df.expanding(min_periods=3).mean()

это output выглядит следующим образом -

A           B           C           D
2000-01-01        NaN         NaN         NaN         NaN
2000-01-02        NaN         NaN         NaN         NaN
2000-01-03   0.434553   -0.667940   -1.051718   -0.826452
2000-01-04   0.743328   -0.198015   -0.852462   -0.262547
2000-01-05   0.614776   -0.205649   -0.583641   -0.303254
2000-01-06   0.538175   -0.005878   -0.687223   -0.199219
2000-01-07   0.505503   -0.108475   -0.790826   -0.081056
2000-01-08   0.454751   -0.223420   -0.671572   -0.230215
2000-01-09   0.586390   -0.206201   -0.517619   -0.267521
2000-01-10   0.560427   -0.037597   -0.399429   -0.376886

.ewm () Функция

ewmприменяется к серии данных. Укажите любое из com, span,halflifeаргумент и примените к нему соответствующую статистическую функцию. Он присваивает веса экспоненциально.

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.randn(10, 4),
   index = pd.date_range('1/1/2000', periods=10),
   columns = ['A', 'B', 'C', 'D'])
print df.ewm(com=0.5).mean()

это output выглядит следующим образом -

A           B           C           D
2000-01-01   1.088512   -0.650942   -2.547450   -0.566858
2000-01-02   0.865131   -0.453626   -1.137961    0.058747
2000-01-03  -0.132245   -0.807671   -0.308308   -1.491002
2000-01-04   1.084036    0.555444   -0.272119    0.480111
2000-01-05   0.425682    0.025511    0.239162   -0.153290
2000-01-06   0.245094    0.671373   -0.725025    0.163310
2000-01-07   0.288030   -0.259337   -1.183515    0.473191
2000-01-08   0.162317   -0.771884   -0.285564   -0.692001
2000-01-09   1.147156   -0.302900    0.380851   -0.607976
2000-01-10   0.600216    0.885614    0.569808   -1.110113

Оконные функции в основном используются для нахождения тенденций в данных графически путем сглаживания кривой. Если повседневные данные сильно различаются и доступно много точек данных, то одним методом является взятие образцов и построение графика, а другим методом - применение оконных вычислений и построение графика по результатам. С помощью этих методов мы можем сгладить кривую или тренд.