อัลกอริทึมกราฟ

กราฟคือสัญกรณ์นามธรรมที่ใช้แสดงการเชื่อมต่อระหว่างคู่ของวัตถุ กราฟประกอบด้วย -

  • Vertices- วัตถุที่เชื่อมต่อกันในกราฟเรียกว่าจุดยอด จุดยอดเรียกอีกอย่างว่าnodes.

  • Edges - ขอบคือลิงค์ที่เชื่อมต่อจุดยอด

กราฟมีสองประเภท -

  • Directed graph - ในกราฟกำกับขอบมีทิศทางกล่าวคือขอบจะเปลี่ยนจากจุดยอดหนึ่งไปยังอีกจุดยอดหนึ่ง

  • Undirected graph - ในกราฟที่ไม่มีทิศทางขอบจะไม่มีทิศทาง

การระบายสีกราฟ

การระบายสีกราฟเป็นวิธีการกำหนดสีให้กับจุดยอดของกราฟเพื่อไม่ให้จุดยอดสองจุดที่อยู่ติดกันมีสีเหมือนกัน ปัญหาการระบายสีกราฟคือ -

  • Vertex coloring - วิธีการระบายสีจุดยอดของกราฟเพื่อไม่ให้จุดยอดสองจุดที่อยู่ติดกันมีสีเดียวกัน

  • Edge Coloring - เป็นวิธีการกำหนดสีให้กับแต่ละขอบเพื่อไม่ให้ขอบสองด้านที่อยู่ติดกันมีสีเหมือนกัน

  • Face coloring - กำหนดสีให้กับแต่ละใบหน้าหรือภูมิภาคของกราฟระนาบเพื่อไม่ให้ใบหน้าสองใบหน้าที่มีขอบเขตร่วมกันมีสีเดียวกัน

หมายเลขโครมาติก

Chromatic number คือจำนวนสีขั้นต่ำที่ต้องใช้ในการระบายสีกราฟ ตัวอย่างเช่นจำนวนสีของกราฟต่อไปนี้คือ 3

แนวคิดของการระบายสีกราฟถูกนำไปใช้ในการจัดทำตารางเวลาการกำหนดความถี่วิทยุมือถือ Suduku การจัดสรรการลงทะเบียนและการระบายสีของแผนที่

ขั้นตอนในการระบายสีกราฟ

  • ตั้งค่าเริ่มต้นของโปรเซสเซอร์แต่ละตัวในอาร์เรย์ n มิติเป็น 1

  • ตอนนี้ในการกำหนดสีเฉพาะให้กับจุดยอดให้พิจารณาว่าสีนั้นถูกกำหนดให้กับจุดยอดที่อยู่ติดกันแล้วหรือไม่

  • หากโปรเซสเซอร์ตรวจพบสีเดียวกันในจุดยอดที่อยู่ติดกันโปรเซสเซอร์จะตั้งค่าในอาร์เรย์เป็น 0

  • หลังจากทำการเปรียบเทียบn 2แล้วหากองค์ประกอบใด ๆ ของอาร์เรย์เป็น 1 แสดงว่าเป็นสีที่ถูกต้อง

Pseudocode สำหรับการระบายสีกราฟ

begin

   create the processors P(i0,i1,...in-1) where 0_iv < m, 0 _ v < n
   status[i0,..in-1] = 1
	
   for j varies from 0 to n-1 do
      begin
		
         for k varies from 0 to n-1 do
         begin
            if aj,k=1 and ij=ikthen
            status[i0,..in-1] =0
         end
			
      end
      ok = ΣStatus
		
   if ok > 0, then display valid coloring exists
   else
      display invalid coloring
      
end

ต้นไม้ที่มีระยะน้อยที่สุด

ต้นไม้ทอดที่มีผลรวมของน้ำหนัก (หรือความยาว) ของขอบทั้งหมดน้อยกว่าต้นไม้ที่ทอดเป็นไปได้อื่น ๆ ทั้งหมดของกราฟ G เรียกว่า a minimal spanning tree หรือ minimum cost spanningต้นไม้. รูปต่อไปนี้แสดงกราฟที่เชื่อมต่อแบบถ่วงน้ำหนัก

แผนภูมิด้านบนที่เป็นไปได้บางส่วนแสดงอยู่ด้านล่าง -

ในบรรดาต้นไม้ที่ทอดยาวข้างต้นรูปที่ (d) คือต้นไม้ที่มีระยะทอดน้อยที่สุด แนวคิดของต้นทุนขั้นต่ำที่ครอบคลุมต้นไม้ถูกนำไปใช้ในปัญหาพนักงานขายในการเดินทางการออกแบบวงจรอิเล็กทรอนิกส์การออกแบบเครือข่ายที่มีประสิทธิภาพและการออกแบบอัลกอริทึมการกำหนดเส้นทางที่มีประสิทธิภาพ

ในการใช้งานโครงสร้างต้นทุนขั้นต่ำจะใช้สองวิธีต่อไปนี้ -

  • อัลกอริทึมของ Prim
  • อัลกอริทึมของ Kruskal

อัลกอริทึมของ Prim

อัลกอริทึมของ Prim เป็นอัลกอริธึมแบบละโมบซึ่งช่วยให้เราค้นหาต้นไม้ที่มีระยะห่างขั้นต่ำสำหรับกราฟที่ไม่ได้กำหนดทิศทางแบบถ่วงน้ำหนัก เลือกจุดยอดก่อนและหาขอบที่มีน้ำหนักต่ำสุดที่จุดยอดนั้น

ขั้นตอนของอัลกอริทึมของ Prim

  • เลือกจุดยอดใด ๆ พูดว่า v 1ของกราฟ G

  • เลือกขอบโดยพูดว่า e 1ของ G เช่นว่า1 = v 1 v 2และ v 1 ≠ v 2และ e 1มีน้ำหนักต่ำสุดระหว่างขอบที่เกิดขึ้นบน v 1ในกราฟ G

  • ตอนนี้ดังต่อไปนี้ขั้นตอนที่ 2 เลือกขั้นต่ำถ่วงน้ำหนักเหตุการณ์ที่เกิดขึ้นที่ขอบบนโวลต์2

  • ดำเนินการต่อไปจนกว่าจะเลือกขอบ n – 1 ที่นี่n คือจำนวนจุดยอด

ต้นไม้ที่ทอดน้อยที่สุดคือ -

อัลกอริทึมของ Kruskal

อัลกอริทึมของ Kruskal เป็นอัลกอริธึมแบบละโมบซึ่งช่วยให้เราค้นหาโครงสร้างการขยายขั้นต่ำสำหรับกราฟถ่วงน้ำหนักที่เชื่อมต่อโดยเพิ่มส่วนโค้งต้นทุนที่เพิ่มขึ้นในแต่ละขั้นตอน มันเป็นอัลกอริธึมต้นไม้ที่มีระยะห่างขั้นต่ำที่หาขอบของน้ำหนักที่น้อยที่สุดที่เป็นไปได้ที่เชื่อมต่อต้นไม้สองต้นในป่า

ขั้นตอนของอัลกอริทึมของ Kruskal

  • เลือกขอบของน้ำหนักขั้นต่ำ พูดว่า e 1ของ Graph G และ e 1ไม่ใช่การวนซ้ำ

  • เลือกต่ำสุดขอบถ่วงน้ำหนักถัดไปเชื่อมต่อกับ e 1

  • ดำเนินการต่อไปจนกว่าจะเลือกขอบ n – 1 ที่นี่n คือจำนวนจุดยอด

ต้นไม้ระยะต่ำสุดของกราฟด้านบนคือ -

อัลกอริทึมเส้นทางที่สั้นที่สุด

อัลกอริทึมเส้นทางที่สั้นที่สุดคือวิธีการค้นหาเส้นทางที่มีต้นทุนน้อยที่สุดจากโหนดต้นทาง (S) ไปยังโหนดปลายทาง (D) ในที่นี้เราจะพูดถึงอัลกอริทึมของ Moore หรือที่เรียกว่า Breadth First Search Algorithm

อัลกอริทึมของมัวร์

  • ติดป้ายจุดยอดต้นทาง S และติดป้ายกำกับ i และตั้งค่า i=0.

  • ค้นหาจุดยอดที่ไม่มีป้ายกำกับทั้งหมดที่อยู่ติดกับจุดยอดที่มีป้ายกำกับ i. หากไม่มีจุดยอดเชื่อมต่อกับจุดยอด S แล้วจุดยอด D จะไม่เชื่อมต่อกับ S หากมีจุดยอดเชื่อมต่อกับ S ให้ติดป้ายกำกับi+1.

  • หากมีป้ายกำกับ D ให้ไปที่ขั้นตอนที่ 4 มิฉะนั้นไปที่ขั้นตอนที่ 2 เพื่อเพิ่ม i = i + 1

  • หยุดหลังจากพบความยาวของเส้นทางที่สั้นที่สุด