R - Datenumformung

Bei der Datenumformung in R geht es darum, die Organisation von Daten in Zeilen und Spalten zu ändern. Die meiste Zeit erfolgt die Datenverarbeitung in R, indem die Eingabedaten als Datenrahmen verwendet werden. Es ist einfach, Daten aus den Zeilen und Spalten eines Datenrahmens zu extrahieren, aber es gibt Situationen, in denen wir den Datenrahmen in einem Format benötigen, das sich von dem Format unterscheidet, in dem wir ihn empfangen haben. R hat viele Funktionen zum Teilen, Zusammenführen und Ändern der Zeilen in Spalten und umgekehrt in einem Datenrahmen.

Spalten und Zeilen in einem Datenrahmen verbinden

Wir können mehrere Vektoren verbinden, um einen Datenrahmen mit dem zu erstellen cbind()Funktion. Wir können auch zwei Datenrahmen mit zusammenführenrbind() Funktion.

# Create vector objects.
city <- c("Tampa","Seattle","Hartford","Denver")
state <- c("FL","WA","CT","CO")
zipcode <- c(33602,98104,06161,80294)

# Combine above three vectors into one data frame.
addresses <- cbind(city,state,zipcode)

# Print a header.
cat("# # # # The First data frame\n") 

# Print the data frame.
print(addresses)

# Create another data frame with similar columns
new.address <- data.frame(
   city = c("Lowry","Charlotte"),
   state = c("CO","FL"),
   zipcode = c("80230","33949"),
   stringsAsFactors = FALSE
)

# Print a header.
cat("# # # The Second data frame\n") 

# Print the data frame.
print(new.address)

# Combine rows form both the data frames.
all.addresses <- rbind(addresses,new.address)

# Print a header.
cat("# # # The combined data frame\n") 

# Print the result.
print(all.addresses)

Wenn wir den obigen Code ausführen, wird das folgende Ergebnis erzeugt:

# # # # The First data frame
     city       state zipcode
[1,] "Tampa"    "FL"  "33602"
[2,] "Seattle"  "WA"  "98104"
[3,] "Hartford" "CT"   "6161" 
[4,] "Denver"   "CO"  "80294"

# # # The Second data frame
       city       state   zipcode
1      Lowry      CO      80230
2      Charlotte  FL      33949

# # # The combined data frame
       city      state zipcode
1      Tampa     FL    33602
2      Seattle   WA    98104
3      Hartford  CT     6161
4      Denver    CO    80294
5      Lowry     CO    80230
6     Charlotte  FL    33949

Zusammenführen von Datenrahmen

Wir können zwei Datenrahmen mit dem zusammenführen merge()Funktion. Die Datenrahmen müssen dieselben Spaltennamen haben, auf denen die Zusammenführung erfolgt.

Im folgenden Beispiel betrachten wir die Datensätze zu Diabetes bei Pima-Indianerinnen, die in den Bibliotheksnamen "MASS" verfügbar sind. Wir führen die beiden Datensätze basierend auf den Werten des Blutdrucks ("bp") und des Body-Mass-Index ("bmi") zusammen. Bei Auswahl dieser beiden Spalten zum Zusammenführen werden die Datensätze, bei denen die Werte dieser beiden Variablen in beiden Datensätzen übereinstimmen, zu einem einzigen Datenrahmen zusammengefasst.

library(MASS)
merged.Pima <- merge(x = Pima.te, y = Pima.tr,
   by.x = c("bp", "bmi"),
   by.y = c("bp", "bmi")
)
print(merged.Pima)
nrow(merged.Pima)

Wenn wir den obigen Code ausführen, wird das folgende Ergebnis erzeugt:

bp  bmi npreg.x glu.x skin.x ped.x age.x type.x npreg.y glu.y skin.y ped.y
1  60 33.8       1   117     23 0.466    27     No       2   125     20 0.088
2  64 29.7       2    75     24 0.370    33     No       2   100     23 0.368
3  64 31.2       5   189     33 0.583    29    Yes       3   158     13 0.295
4  64 33.2       4   117     27 0.230    24     No       1    96     27 0.289
5  66 38.1       3   115     39 0.150    28     No       1   114     36 0.289
6  68 38.5       2   100     25 0.324    26     No       7   129     49 0.439
7  70 27.4       1   116     28 0.204    21     No       0   124     20 0.254
8  70 33.1       4    91     32 0.446    22     No       9   123     44 0.374
9  70 35.4       9   124     33 0.282    34     No       6   134     23 0.542
10 72 25.6       1   157     21 0.123    24     No       4    99     17 0.294
11 72 37.7       5    95     33 0.370    27     No       6   103     32 0.324
12 74 25.9       9   134     33 0.460    81     No       8   126     38 0.162
13 74 25.9       1    95     21 0.673    36     No       8   126     38 0.162
14 78 27.6       5    88     30 0.258    37     No       6   125     31 0.565
15 78 27.6      10   122     31 0.512    45     No       6   125     31 0.565
16 78 39.4       2   112     50 0.175    24     No       4   112     40 0.236
17 88 34.5       1   117     24 0.403    40    Yes       4   127     11 0.598
   age.y type.y
1     31     No
2     21     No
3     24     No
4     21     No
5     21     No
6     43    Yes
7     36    Yes
8     40     No
9     29    Yes
10    28     No
11    55     No
12    39     No
13    39     No
14    49    Yes
15    49    Yes
16    38     No
17    28     No
[1] 17

Schmelzen und Gießen

Einer der interessantesten Aspekte der R-Programmierung besteht darin, die Form der Daten in mehreren Schritten zu ändern, um eine gewünschte Form zu erhalten. Die dazu verwendeten Funktionen werden aufgerufenmelt() und cast().

Wir betrachten den Datensatz "Schiffe" in der Bibliothek "MASS".

library(MASS)
print(ships)

Wenn wir den obigen Code ausführen, wird das folgende Ergebnis erzeugt:

type year   period   service   incidents
1     A   60     60        127         0
2     A   60     75         63         0
3     A   65     60       1095         3
4     A   65     75       1095         4
5     A   70     60       1512         6
.............
.............
8     A   75     75       2244         11
9     B   60     60      44882         39
10    B   60     75      17176         29
11    B   65     60      28609         58
............
............
17    C   60     60      1179          1
18    C   60     75       552          1
19    C   65     60       781          0
............
............

Daten schmelzen

Jetzt schmelzen wir die Daten, um sie zu organisieren, und konvertieren alle Spalten außer Typ und Jahr in mehrere Zeilen.

molten.ships <- melt(ships, id = c("type","year"))
print(molten.ships)

Wenn wir den obigen Code ausführen, wird das folgende Ergebnis erzeugt:

type year  variable  value
1      A   60    period      60
2      A   60    period      75
3      A   65    period      60
4      A   65    period      75
............
............
9      B   60    period      60
10     B   60    period      75
11     B   65    period      60
12     B   65    period      75
13     B   70    period      60
...........
...........
41     A   60    service    127
42     A   60    service     63
43     A   65    service   1095
...........
...........
70     D   70    service   1208
71     D   75    service      0
72     D   75    service   2051
73     E   60    service     45
74     E   60    service      0
75     E   65    service    789
...........
...........
101    C   70    incidents    6
102    C   70    incidents    2
103    C   75    incidents    0
104    C   75    incidents    1
105    D   60    incidents    0
106    D   60    incidents    0
...........
...........

Wirf die geschmolzenen Daten

Wir können die geschmolzenen Daten in eine neue Form umwandeln, in der das Aggregat jedes Schiffstyps für jedes Jahr erstellt wird. Dies geschieht mit demcast() Funktion.

recasted.ship <- cast(molten.ships, type+year~variable,sum)
print(recasted.ship)

Wenn wir den obigen Code ausführen, wird das folgende Ergebnis erzeugt:

type year  period  service  incidents
1     A   60    135       190      0
2     A   65    135      2190      7
3     A   70    135      4865     24
4     A   75    135      2244     11
5     B   60    135     62058     68
6     B   65    135     48979    111
7     B   70    135     20163     56
8     B   75    135      7117     18
9     C   60    135      1731      2
10    C   65    135      1457      1
11    C   70    135      2731      8
12    C   75    135       274      1
13    D   60    135       356      0
14    D   65    135       480      0
15    D   70    135      1557     13
16    D   75    135      2051      4
17    E   60    135        45      0
18    E   65    135      1226     14
19    E   70    135      3318     17
20    E   75    135       542      1