Hakowanie szyfru RSA

Hakowanie szyfru RSA jest możliwe w przypadku małych liczb pierwszych, ale jest uważane za niemożliwe, jeśli jest używany z dużymi liczbami. Powody, które określają, dlaczego hakowanie szyfru RSA jest trudne, są następujące:

  • Atak siłowy nie zadziała, ponieważ istnieje zbyt wiele możliwych kluczy do przepracowania. Ponadto zajmuje to dużo czasu.

  • Atak słownikowy nie zadziała w algorytmie RSA, ponieważ klucze są numeryczne i nie zawierają żadnych znaków.

  • Analiza częstotliwości znaków jest bardzo trudna do prześledzenia, ponieważ pojedynczy zaszyfrowany blok reprezentuje różne znaki.

  • Nie ma konkretnych matematycznych sztuczek do zhakowania szyfru RSA.

Równanie deszyfrowania RSA to -

M = C^d mod n

Za pomocą małych liczb pierwszych możemy spróbować zhakować szyfr RSA, a przykładowy kod tego samego jest wymieniony poniżej -

def p_and_q(n):
   data = []
   for i in range(2, n):
      if n % i == 0:
         data.append(i)
   return tuple(data)

def euler(p, q):
   return (p - 1) * (q - 1)

def private_index(e, euler_v):
   for i in range(2, euler_v):
      if i * e % euler_v == 1:
         return i

def decipher(d, n, c):
   return c ** d % n
	def main():
      e = int(input("input e: "))
      n = int(input("input n: "))
      c = int(input("input c: "))
      
      # t = 123
      # private key = (103, 143)
      p_and_q_v = p_and_q(n)
      # print("[p_and_q]: ", p_and_q_v)
      euler_v = euler(p_and_q_v[0], p_and_q_v[1])
      
      # print("[euler]: ", euler_v)
      d = private_index(e, euler_v)
      plain = decipher(d, n, c)
      print("plain: ", plain)
if __name__ == "__main__":
   main()

Wynik

Powyższy kod daje następujące dane wyjściowe -