CNTK - Modelo de Regressão Logística

Este capítulo trata da construção de um modelo de regressão logística no CNTK.

Noções básicas do modelo de regressão logística

A regressão logística, uma das técnicas de ML mais simples, é uma técnica especialmente para classificação binária. Em outras palavras, para criar um modelo de previsão em situações onde o valor da variável a ser prevista pode ser um de apenas dois valores categóricos. Um dos exemplos mais simples de Regressão Logística é prever se a pessoa é homem ou mulher, com base na idade, voz, cabelos e assim por diante.

Exemplo

Vamos entender o conceito de Regressão Logística matematicamente com a ajuda de outro exemplo -

Suponha que queiramos prever a capacidade de crédito de um pedido de empréstimo; 0 significa rejeitar e 1 significa aprovar, com base no candidatodebt , income e credit rating. Representamos dívida com X1, receita com X2 e classificação de crédito com X3.

Na Regressão Logística, determinamos um valor de peso, representado por w, para cada recurso e um único valor de polarização, representado por b.

Agora suponha,

X1 = 3.0
X2 = -2.0
X3 = 1.0

E suponha que determinemos o peso e o viés da seguinte forma -

W1 = 0.65, W2 = 1.75, W3 = 2.05 and b = 0.33

Agora, para prever a classe, precisamos aplicar a seguinte fórmula -

Z = (X1*W1)+(X2*W2)+(X3+W3)+b
i.e. Z = (3.0)*(0.65) + (-2.0)*(1.75) + (1.0)*(2.05) + 0.33
= 0.83

Em seguida, precisamos calcular P = 1.0/(1.0 + exp(-Z)). Aqui, a função exp () é o número de Euler.

P = 1.0/(1.0 + exp(-0.83)
= 0.6963

O valor P pode ser interpretado como a probabilidade de que a classe seja 1. Se P <0,5, a previsão é classe = 0, caso contrário, a previsão (P> = 0,5) é classe = 1.

Para determinar os valores de peso e polarização, devemos obter um conjunto de dados de treinamento com os valores preditores de entrada conhecidos e os valores de rótulos de classe corretos conhecidos. Depois disso, podemos usar um algoritmo, geralmente Gradient Descent, para encontrar os valores de peso e viés.

Exemplo de implementação de modelo LR

Para este modelo LR, vamos usar o seguinte conjunto de dados -

1.0, 2.0, 0
3.0, 4.0, 0
5.0, 2.0, 0
6.0, 3.0, 0
8.0, 1.0, 0
9.0, 2.0, 0
1.0, 4.0, 1
2.0, 5.0, 1
4.0, 6.0, 1
6.0, 5.0, 1
7.0, 3.0, 1
8.0, 5.0, 1

Para iniciar a implementação deste modelo LR no CNTK, precisamos primeiro importar os seguintes pacotes -

import numpy as np
import cntk as C

O programa está estruturado com a função main () da seguinte forma -

def main():
print("Using CNTK version = " + str(C.__version__) + "\n")

Agora, precisamos carregar os dados de treinamento na memória da seguinte maneira -

data_file = ".\\dataLRmodel.txt"
print("Loading data from " + data_file + "\n")
features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", skiprows=0, usecols=[0,1])
labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", skiprows=0, usecols=[2], ndmin=2)

Agora, estaremos criando um programa de treinamento que cria um modelo de regressão logística compatível com os dados de treinamento -

features_dim = 2
labels_dim = 1
X = C.ops.input_variable(features_dim, np.float32)
y = C.input_variable(labels_dim, np.float32)
W = C.parameter(shape=(features_dim, 1)) # trainable cntk.Parameter
b = C.parameter(shape=(labels_dim))
z = C.times(X, W) + b
p = 1.0 / (1.0 + C.exp(-z))
model = p

Agora, precisamos criar Lerner e treinador da seguinte maneira -

ce_error = C.binary_cross_entropy(model, y) # CE a bit more principled for LR
fixed_lr = 0.010
learner = C.sgd(model.parameters, fixed_lr)
trainer = C.Trainer(model, (ce_error), [learner])
max_iterations = 4000

Treinamento de modelo LR

Depois de criar o modelo LR, em seguida, é hora de iniciar o processo de treinamento -

np.random.seed(4)
N = len(features_mat)
for i in range(0, max_iterations):
row = np.random.choice(N,1) # pick a random row from training items
trainer.train_minibatch({ X: features_mat[row], y: labels_mat[row] })
if i % 1000 == 0 and i > 0:
mcee = trainer.previous_minibatch_loss_average
print(str(i) + " Cross-entropy error on curr item = %0.4f " % mcee)

Agora, com a ajuda do código a seguir, podemos imprimir os pesos e o viés do modelo -

np.set_printoptions(precision=4, suppress=True)
print("Model weights: ")
print(W.value)
print("Model bias:")
print(b.value)
print("")
if __name__ == "__main__":
main()

Treinando um modelo de regressão logística - exemplo completo

import numpy as np
import cntk as C
   def main():
print("Using CNTK version = " + str(C.__version__) + "\n")
data_file = ".\\dataLRmodel.txt" # provide the name and the location of data file
print("Loading data from " + data_file + "\n")
features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", skiprows=0, usecols=[0,1])
labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", skiprows=0, usecols=[2], ndmin=2)
features_dim = 2
labels_dim = 1
X = C.ops.input_variable(features_dim, np.float32)
y = C.input_variable(labels_dim, np.float32)
W = C.parameter(shape=(features_dim, 1)) # trainable cntk.Parameter
b = C.parameter(shape=(labels_dim))
z = C.times(X, W) + b
p = 1.0 / (1.0 + C.exp(-z))
model = p
ce_error = C.binary_cross_entropy(model, y) # CE a bit more principled for LR
fixed_lr = 0.010
learner = C.sgd(model.parameters, fixed_lr)
trainer = C.Trainer(model, (ce_error), [learner])
max_iterations = 4000
np.random.seed(4)
N = len(features_mat)
for i in range(0, max_iterations):
row = np.random.choice(N,1) # pick a random row from training items
trainer.train_minibatch({ X: features_mat[row], y: labels_mat[row] })
if i % 1000 == 0 and i > 0:
mcee = trainer.previous_minibatch_loss_average
print(str(i) + " Cross-entropy error on curr item = %0.4f " % mcee)
np.set_printoptions(precision=4, suppress=True)
print("Model weights: ")
print(W.value)
print("Model bias:")
print(b.value)
if __name__ == "__main__":
  main()

Resultado

Using CNTK version = 2.7
1000 cross entropy error on curr item = 0.1941
2000 cross entropy error on curr item = 0.1746
3000 cross entropy error on curr item = 0.0563
Model weights:
[-0.2049]
   [0.9666]]
Model bias:
[-2.2846]

Predição usando modelo LR treinado

Uma vez que o modelo LR foi treinado, podemos usá-lo para predição da seguinte forma -

Em primeiro lugar, nosso programa de avaliação importa o pacote numpy e carrega os dados de treinamento em uma matriz de recursos e uma matriz de rótulo de classe da mesma forma que o programa de treinamento que implementamos acima -

import numpy as np
def main():
data_file = ".\\dataLRmodel.txt" # provide the name and the location of data file
features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",
skiprows=0, usecols=(0,1))
labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",
skiprows=0, usecols=[2], ndmin=2)

Em seguida, é hora de definir os valores dos pesos e do viés que foram determinados por nosso programa de treinamento -

print("Setting weights and bias values \n")
weights = np.array([0.0925, 1.1722], dtype=np.float32)
bias = np.array([-4.5400], dtype=np.float32)
N = len(features_mat)
features_dim = 2

Em seguida, nosso programa de avaliação calculará a probabilidade de regressão logística percorrendo cada item de treinamento da seguinte forma -

print("item pred_prob pred_label act_label result")
for i in range(0, N): # each item
   x = features_mat[i]
   z = 0.0
   for j in range(0, features_dim):
   z += x[j] * weights[j]
   z += bias[0]
   pred_prob = 1.0 / (1.0 + np.exp(-z))
  pred_label = 0 if pred_prob < 0.5 else 1
   act_label = labels_mat[i]
   pred_str = ‘correct’ if np.absolute(pred_label - act_label) < 1.0e-5 \
    else ‘WRONG’
  print("%2d %0.4f %0.0f %0.0f %s" % \ (i, pred_prob, pred_label, act_label, pred_str))

Agora vamos demonstrar como fazer previsões -

x = np.array([9.5, 4.5], dtype=np.float32)
print("\nPredicting class for age, education = ")
print(x)
z = 0.0
for j in range(0, features_dim):
z += x[j] * weights[j]
z += bias[0]
p = 1.0 / (1.0 + np.exp(-z))
print("Predicted p = " + str(p))
if p < 0.5: print("Predicted class = 0")
else: print("Predicted class = 1")

Programa completo de avaliação de previsão

import numpy as np
def main():
data_file = ".\\dataLRmodel.txt" # provide the name and the location of data file
features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",
skiprows=0, usecols=(0,1))
labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",
skiprows=0, usecols=[2], ndmin=2)
print("Setting weights and bias values \n")
weights = np.array([0.0925, 1.1722], dtype=np.float32)
bias = np.array([-4.5400], dtype=np.float32)
N = len(features_mat)
features_dim = 2
print("item pred_prob pred_label act_label result")
for i in range(0, N): # each item
   x = features_mat[i]
   z = 0.0
   for j in range(0, features_dim):
     z += x[j] * weights[j]
   z += bias[0]
   pred_prob = 1.0 / (1.0 + np.exp(-z))
   pred_label = 0 if pred_prob < 0.5 else 1
   act_label = labels_mat[i]
   pred_str = ‘correct’ if np.absolute(pred_label - act_label) < 1.0e-5 \
     else ‘WRONG’
  print("%2d %0.4f %0.0f %0.0f %s" % \ (i, pred_prob, pred_label, act_label, pred_str))
x = np.array([9.5, 4.5], dtype=np.float32)
print("\nPredicting class for age, education = ")
print(x)
z = 0.0
for j in range(0, features_dim):
   z += x[j] * weights[j]
z += bias[0]
p = 1.0 / (1.0 + np.exp(-z))
print("Predicted p = " + str(p))
if p < 0.5: print("Predicted class = 0")
else: print("Predicted class = 1")
if __name__ == "__main__":
  main()

Resultado

Definir pesos e valores de polarização.

Item  pred_prob  pred_label  act_label  result
0   0.3640         0             0     correct
1   0.7254         1             0      WRONG
2   0.2019         0             0     correct
3   0.3562         0             0     correct
4   0.0493         0             0     correct
5   0.1005         0             0     correct
6   0.7892         1             1     correct
7   0.8564         1             1     correct
8   0.9654         1             1     correct
9   0.7587         1             1     correct
10  0.3040         0             1      WRONG
11  0.7129         1             1     correct
Predicting class for age, education =
[9.5 4.5]
Predicting p = 0.526487952
Predicting class = 1