NumPy - Iterando Sobre Array
O pacote NumPy contém um objeto iterador numpy.nditer. É um objeto iterador multidimensional eficiente com o qual é possível iterar em um array. Cada elemento de uma matriz é visitado usando a interface Iterator padrão do Python.
Vamos criar um array 3X4 usando a função arange () e iterar sobre ele usando nditer.
Exemplo 1
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'
print 'Modified array is:'
for x in np.nditer(a):
print x,
O resultado deste programa é o seguinte -
Original array is:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55
Exemplo 2
A ordem da iteração é escolhida para coincidir com o layout de memória de um array, sem considerar uma ordem particular. Isso pode ser visto pela iteração da transposição da matriz acima.
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'
print 'Transpose of the original array is:'
b = a.T
print b
print '\n'
print 'Modified array is:'
for x in np.nditer(b):
print x,
O resultado do programa acima é o seguinte -
Original array is:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
Transpose of the original array is:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55
Ordem de Iteração
Se os mesmos elementos forem armazenados usando a ordem do estilo F, o iterador escolhe a maneira mais eficiente de iterar em uma matriz.
Exemplo 1
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'
print 'Transpose of the original array is:'
b = a.T
print b
print '\n'
print 'Sorted in C-style order:'
c = b.copy(order = 'C')
print c
for x in np.nditer(c):
print x,
print '\n'
print 'Sorted in F-style order:'
c = b.copy(order = 'F')
print c
for x in np.nditer(c):
print x,
Sua saída seria a seguinte -
Original array is:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
Transpose of the original array is:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
Sorted in C-style order:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0 20 40 5 25 45 10 30 50 15 35 55
Sorted in F-style order:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0 5 10 15 20 25 30 35 40 45 50 55
Exemplo 2
É possível forçar nditer objeto para usar uma ordem específica, mencionando-a explicitamente.
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'
print 'Sorted in C-style order:'
for x in np.nditer(a, order = 'C'):
print x,
print '\n'
print 'Sorted in F-style order:'
for x in np.nditer(a, order = 'F'):
print x,
Sua saída seria -
Original array is:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
Sorted in C-style order:
0 5 10 15 20 25 30 35 40 45 50 55
Sorted in F-style order:
0 20 40 5 25 45 10 30 50 15 35 55
Modificando Valores de Matriz
o nditer objeto tem outro parâmetro opcional chamado op_flags. Seu valor padrão é somente leitura, mas pode ser definido para o modo de leitura e gravação ou somente gravação. Isso habilitará a modificação de elementos do array usando este iterador.
Exemplo
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'
for x in np.nditer(a, op_flags = ['readwrite']):
x[...] = 2*x
print 'Modified array is:'
print a
Seu resultado é o seguinte -
Original array is:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
Modified array is:
[[ 0 10 20 30]
[ 40 50 60 70]
[ 80 90 100 110]]
Loop Externo
O construtor da classe nditer tem um ‘flags’ parâmetro, que pode assumir os seguintes valores -
Sr. Não. | Parâmetro e Descrição |
---|---|
1 | c_index O índice C_order pode ser rastreado |
2 | f_index O índice Fortran_order é rastreado |
3 | multi-index Tipos de índices com um por iteração podem ser rastreados |
4 | external_loop Faz com que os valores fornecidos sejam matrizes unidimensionais com vários valores em vez de matrizes com dimensão zero |
Exemplo
No exemplo a seguir, os arrays unidimensionais correspondentes a cada coluna são percorridos pelo iterador.
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'
print 'Modified array is:'
for x in np.nditer(a, flags = ['external_loop'], order = 'F'):
print x,
O resultado é o seguinte -
Original array is:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
Modified array is:
[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]
Iteração de transmissão
Se duas matrizes são broadcastable, um combinado nditerobjeto é capaz de iterar sobre eles simultaneamente. Supondo que uma matriza tem dimensão 3X4, e há outra matriz b da dimensão 1X4, o iterador do seguinte tipo é usado (matriz b é transmitido para o tamanho de a)
Exemplo
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'First array is:'
print a
print '\n'
print 'Second array is:'
b = np.array([1, 2, 3, 4], dtype = int)
print b
print '\n'
print 'Modified array is:'
for x,y in np.nditer([a,b]):
print "%d:%d" % (x,y),
Sua saída seria a seguinte -
First array is:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
Second array is:
[1 2 3 4]
Modified array is:
0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4