การแปลงระบบตัวเลข
ดังที่คุณทราบระบบเลขฐานสิบฐานสองฐานแปดและเลขฐานสิบหกเป็นระบบตัวเลขค่าตำแหน่ง ในการแปลงเลขฐานสองฐานแปดและเลขฐานสิบหกเป็นเลขฐานสิบเราเพียงแค่ต้องเพิ่มผลคูณของแต่ละหลักด้วยค่าตำแหน่ง ที่นี่เราจะเรียนรู้การแปลงอื่น ๆ ในระบบตัวเลขเหล่านี้
ทศนิยมเป็นไบนารี
ตัวเลขฐานสิบสามารถแปลงเป็นเลขฐานสองได้โดยการหารจำนวนซ้ำ ๆ ด้วย 2 ในขณะที่บันทึกส่วนที่เหลือ ลองมาเป็นตัวอย่างเพื่อดูว่าสิ่งนี้เกิดขึ้นได้อย่างไร
ส่วนที่เหลือจะต้องอ่านจากล่างขึ้นบนเพื่อให้ได้ค่าเทียบเท่าไบนารี
43 10 = 101011 2
ทศนิยมเป็นฐานแปด
ตัวเลขฐานสิบสามารถแปลงเป็นเลขฐานแปดได้โดยการหารจำนวนซ้ำด้วย 8 ในขณะที่บันทึกส่วนที่เหลือ ลองมาเป็นตัวอย่างเพื่อดูว่าสิ่งนี้เกิดขึ้นได้อย่างไร
การอ่านส่วนที่เหลือจากล่างขึ้นบน
473 10 = 731 8
ทศนิยมเป็นเลขฐานสิบหก
ตัวเลขฐานสิบสามารถแปลงเป็นเลขฐานแปดได้โดยการหารตัวเลขซ้ำ 16 ในขณะบันทึกส่วนที่เหลือ ลองมาเป็นตัวอย่างเพื่อดูว่าเกิดขึ้นได้อย่างไร
การอ่านส่วนที่เหลือจากล่างขึ้นบนเราได้
423 10 = 1A7 16
ไบนารีเป็นฐานแปดและในทางกลับกัน
ในการแปลงเลขฐานสองเป็นเลขฐานแปดให้ทำตามขั้นตอนเหล่านี้ -
เริ่มจากบิตที่มีนัยสำคัญน้อยที่สุดให้สร้างกลุ่มสามบิต
หากมีบิตน้อยกว่าหนึ่งหรือสองบิตในการสร้างกลุ่มสามารถเพิ่ม 0s หลังบิตที่มีนัยสำคัญที่สุดได้
แปลงแต่ละกลุ่มให้เป็นเลขฐานแปดที่เท่ากัน
ลองมาเป็นตัวอย่างเพื่อทำความเข้าใจนี้
1011001010 12 = 2625 8
ในการแปลงเลขฐานแปดเป็นเลขฐานสองเลขฐานแปดแต่ละตัวจะถูกแปลงเป็นเลขฐานสอง 3 บิตตามตารางนี้
เลขฐานแปด | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
เทียบเท่าไบนารี | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
54673 8 = 101100110111011 2
ไบนารีเป็นเลขฐานสิบหก
ในการแปลงเลขฐานสองเป็นเลขฐานสิบหกให้ทำตามขั้นตอนเหล่านี้ -
เริ่มจากบิตที่มีนัยสำคัญน้อยที่สุดให้สร้างกลุ่มสี่บิต
หากมีบิตน้อยกว่าหนึ่งหรือสองบิตในการสร้างกลุ่มสามารถเพิ่ม 0s หลังบิตที่มีนัยสำคัญที่สุดได้
แปลงแต่ละกลุ่มให้เป็นเลขฐานแปดที่เท่ากัน
ลองมาเป็นตัวอย่างเพื่อทำความเข้าใจนี้
10110110101 2 = DB5 16
ในการแปลงเลขฐานแปดเป็นเลขฐานสองเลขฐานแปดแต่ละตัวจะถูกแปลงเป็นเลขฐานสอง 3 บิต