วิศวกรรมไมโครเวฟ - แมกนีตรอน

ซึ่งแตกต่างจากหลอดที่กล่าวถึงจนถึงตอนนี้ Magnetrons เป็นท่อข้ามสนามที่สนามไฟฟ้าและสนามแม่เหล็กข้ามกล่าวคือวิ่งในแนวตั้งฉากซึ่งกันและกัน ใน TWT พบว่าอิเล็กตรอนเมื่อทำปฏิกิริยากับ RF เป็นเวลานานกว่าใน Klystron ทำให้ประสิทธิภาพสูงขึ้น ใช้เทคนิคเดียวกันนี้ใน Magnetrons

ประเภทของแมกนีตรอน

แมกนีตรอนมีสามประเภทหลัก ๆ

ประเภทความต้านทานเชิงลบ

  • ใช้ความต้านทานเชิงลบระหว่างสองส่วนขั้วบวก
  • มีประสิทธิภาพต่ำ
  • ใช้ที่ความถี่ต่ำ (<500 MHz)

แมกนีตรอนความถี่ไซโคลตรอน

  • การซิงโครไนซ์ระหว่างส่วนประกอบไฟฟ้าและอิเล็กตรอนแบบสั่นจะถูกพิจารณา

  • มีประโยชน์สำหรับความถี่ที่สูงกว่า 100MHz

Travel Wave หรือ Cavity Type

  • ปฏิสัมพันธ์ระหว่างอิเล็กตรอนและสนาม EM ที่หมุนจะถูกนำมาพิจารณา

  • มีการสั่นของกำลังสูงสุดสูง

  • มีประโยชน์ในการใช้งานเรดาร์

โพรงแมกนีตรอน

Magnetron เรียกว่า Cavity Magnetron เนื่องจากขั้วบวกถูกสร้างเป็นโพรงเรโซแนนซ์และแม่เหล็กถาวรถูกใช้เพื่อสร้างสนามแม่เหล็กที่แรงซึ่งการกระทำของทั้งสองอย่างนี้ทำให้อุปกรณ์ทำงานได้

การก่อสร้างโพรงแมกนีตรอน

แคโทดทรงกระบอกหนาอยู่ตรงกลางและแท่งทองแดงทรงกระบอกคงที่ตามแนวแกนซึ่งทำหน้าที่เป็นขั้วบวก บล็อกขั้วบวกนี้สร้างขึ้นจากสล็อตจำนวนมากที่ทำหน้าที่เป็นโพรงแอโนดเรโซแนนซ์

ช่องว่างที่มีอยู่ระหว่างขั้วบวกและขั้วลบเรียกว่าเป็น Interaction space. สนามไฟฟ้ามีอยู่ในแนวรัศมีในขณะที่สนามแม่เหล็กมีอยู่ตามแนวแกนในโพรงแมกนีตรอน สนามแม่เหล็กนี้ผลิตโดยแม่เหล็กถาวรซึ่งวางไว้เพื่อให้เส้นแม่เหล็กขนานกับแคโทดและตั้งฉากกับสนามไฟฟ้าที่มีอยู่ระหว่างขั้วบวกและขั้วลบ

ตัวเลขต่อไปนี้แสดงรายละเอียดโครงสร้างของโพรงแมกนีตรอนและเส้นแม่เหล็กของฟลักซ์ที่มีอยู่ตามแนวแกน

โพรงแมกนีตรอนนี้มี 8 ช่องประกบกันอย่างแน่นหนา แมกนีตรอนแบบช่อง N มีโหมดการทำงาน $ N $ การดำเนินการเหล่านี้ขึ้นอยู่กับความถี่และเฟสของการสั่น การกะระยะทั้งหมดรอบวงแหวนของตัวสะท้อนโพรงนี้ควรเป็น $ 2n \ pi $ โดยที่ $ n $ เป็นจำนวนเต็ม

หาก $ \ phi_v $ แสดงถึงการเปลี่ยนเฟสสัมพัทธ์ของสนามไฟฟ้ากระแสสลับในโพรงที่อยู่ติดกันดังนั้น

$$ \ phi_v = \ frac {2 \ pi n} {N} $$

โดยที่ $ n = 0, \: \ pm1, \: \ pm2, \: \ pm \: (\ frac {N} {2} -1), \: \ pm \ frac {N} {2} $

ซึ่งหมายความว่า $ \ frac {N} {2} $ mode of resonance จะมีอยู่ถ้า $ N $ เป็นเลขคู่

ถ้า,

$$ n = \ frac {N} {2} \ quad แล้ว \ quad \ phi_v = \ pi $$

โหมดการสั่นพ้องนี้เรียกว่า $ \ pi-mode $

$$ n = 0 \ quad แล้ว \ quad \ phi_v = 0 $$

ซึ่งเรียกว่าเป็นไฟล์ Zero modeเนื่องจากจะไม่มีสนามไฟฟ้า RF ระหว่างขั้วบวกและแคโทด นี้เรียกอีกอย่างว่าFringing Field และโหมดนี้ไม่ได้ใช้ในแมกนีตรอน

การทำงานของโพรงแมกนีตรอน

เมื่อ Cavity Klystron อยู่ระหว่างการดำเนินการเรามีกรณีต่างๆที่ต้องพิจารณา ให้เราดูรายละเอียด

Case 1

ถ้าไม่มีสนามแม่เหล็กเช่น B = 0 ก็จะสังเกตพฤติกรรมของอิเล็กตรอนได้ดังรูปต่อไปนี้ พิจารณาตัวอย่างที่อิเล็กตรอนa โดยตรงไปยังขั้วบวกภายใต้แรงเคลื่อนไฟฟ้าในแนวรัศมี

Case 2

หากมีการเพิ่มขึ้นของสนามแม่เหล็กแรงด้านข้างจะกระทำต่ออิเล็กตรอน สิ่งนี้สามารถสังเกตได้ในรูปต่อไปนี้โดยพิจารณาจากอิเล็กตรอนb ซึ่งใช้เส้นทางโค้งในขณะที่ทั้งสองกำลังกระทำกับมัน

รัศมีของเส้นทางนี้คำนวณได้จาก

$$ R = \ frac {mv} {eB} $$

มันแปรผันตามสัดส่วนตามความเร็วของอิเล็กตรอนและเป็นสัดส่วนผกผันกับความแรงของสนามแม่เหล็ก

Case 3

ถ้าสนามแม่เหล็ก B จะเพิ่มขึ้นอีกอิเล็กตรอนไปตามเส้นทางเช่นอิเล็กตรอน cเพียงแค่แทะเล็มพื้นผิวแอโนดและทำให้กระแสแอโนดเป็นศูนย์ นี้เรียกว่าเป็นCritical magnetic field"$ (B_c) $ ซึ่งเป็นสนามแม่เหล็กที่ถูกตัดออกอ้างอิงรูปต่อไปนี้เพื่อความเข้าใจที่ดีขึ้น

Case 4

ถ้าสนามแม่เหล็กถูกสร้างขึ้นมากกว่าสนามวิกฤต

$$ B> B_c $$

จากนั้นอิเล็กตรอนไปตามเส้นทางเป็นอิเล็กตรอน dซึ่งอิเล็กตรอนจะกระโดดกลับไปที่แคโทดโดยไม่ไปที่ขั้วบวก สาเหตุนี้ "back heating"ของแคโทดโปรดดูรูปต่อไปนี้

ซึ่งทำได้โดยการตัดแหล่งจ่ายไฟฟ้าเมื่อการสั่นเริ่มขึ้น หากยังคงดำเนินต่อไปประสิทธิภาพการเปล่งแสงของแคโทดจะได้รับผลกระทบ

การทำงานของ Cavity Magnetron พร้อม Active RF Field

เราได้พูดถึงการทำงานของโพรงแมกนีตรอนที่ไม่มีสนาม RF ในโพรงของแมกนีตรอน (เคสแบบคงที่) ตอนนี้ให้เราพูดถึงการทำงานของมันเมื่อเรามีฟิลด์ RF ที่ใช้งานอยู่

เช่นเดียวกับใน TWT ให้เราสมมติว่ามีการสั่นของคลื่นความถี่วิทยุเริ่มต้นเนื่องจากมีสัญญาณรบกวนชั่วคราว การสั่นจะคงอยู่โดยการทำงานของอุปกรณ์ มีอิเล็กตรอนสามชนิดที่ปล่อยออกมาในกระบวนการนี้ซึ่งการกระทำนี้เข้าใจว่าเป็นอิเล็กตรอนa, b และ cในสามกรณีที่แตกต่างกัน

Case 1

เมื่อมีการแกว่งอิเล็กตรอน a, ชะลอการถ่ายโอนพลังงานเพื่อการแกว่ง อิเล็กตรอนดังกล่าวที่ถ่ายโอนพลังงานไปยังการสั่นเรียกว่าfavored electrons. อิเล็กตรอนเหล่านี้มีหน้าที่bunching effect.

Case 2

ในกรณีนี้อิเล็กตรอนอีกตัวหนึ่งพูด bใช้พลังงานจากการสั่นและเพิ่มความเร็ว เมื่อเสร็จแล้ว

  • มันโค้งอย่างรวดเร็วมากขึ้น
  • ใช้เวลาเพียงเล็กน้อยในพื้นที่ปฏิสัมพันธ์
  • มันกลับไปที่ขั้วลบ

อิเล็กตรอนเหล่านี้เรียกว่า unfavored electrons. พวกเขาไม่ได้มีส่วนร่วมในผลพวง นอกจากนี้อิเล็กตรอนเหล่านี้ยังเป็นอันตรายเนื่องจากทำให้เกิด "ความร้อนย้อนกลับ"

Case 3

ในกรณีนี้อิเล็กตรอน cซึ่งปล่อยออกมาหลังจากนั้นเล็กน้อยจะเคลื่อนที่เร็วขึ้น มันพยายามจับอิเล็กตรอนa. อิเล็กตรอนตัวถัดไปปล่อยออกมาdพยายามก้าวไปด้วย a. เป็นผลให้อิเล็กตรอนที่ชื่นชอบa, c และ dสร้างกลุ่มอิเล็กตรอนหรือเมฆอิเล็กตรอน เรียกว่าเป็น "Phase focus effect"

กระบวนการทั้งหมดนี้เข้าใจได้ดีขึ้นโดยดูที่รูปต่อไปนี้

รูป A แสดงการเคลื่อนที่ของอิเล็กตรอนในกรณีต่างๆในขณะที่รูป B แสดงเมฆอิเล็กตรอนที่ก่อตัวขึ้น เมฆอิเล็กตรอนเหล่านี้เกิดขึ้นในขณะที่อุปกรณ์กำลังทำงาน ประจุไฟฟ้าปรากฏบนพื้นผิวภายในของส่วนแอโนดเหล่านี้ตามการสั่นในโพรง สิ่งนี้ทำให้เกิดสนามไฟฟ้าหมุนตามเข็มนาฬิกาซึ่งสามารถมองเห็นได้จริงขณะทำการทดลองจริง

ในขณะที่สนามไฟฟ้ากำลังหมุนเส้นฟลักซ์แม่เหล็กจะเกิดขึ้นขนานกับแคโทดซึ่งภายใต้เอฟเฟกต์ที่รวมกันนั้นกลุ่มอิเล็กตรอนจะถูกสร้างขึ้นด้วยซี่สี่ซี่โดยนำไปยังส่วนแอโนดบวกที่ใกล้ที่สุดในวิถีเกลียว