Java DIP - Operator Sobel
Operator Sobel sangat mirip dengan operator Prewitt. Ini juga merupakan topeng turunan dan digunakan untuk deteksi tepi. Operator sobel digunakan untuk mendeteksi dua macam tepi pada suatu citra: Tepi arah vertikal dan tepi arah horizontal.
Kami akan menggunakan OpenCV fungsi filter2Duntuk menerapkan operator Sobel ke gambar. Itu dapat ditemukan di bawahImgprocpaket. Sintaksnya diberikan di bawah ini -
filter2D(src, dst, depth , kernel, anchor, delta, BORDER_DEFAULT );
Argumen fungsi dijelaskan di bawah ini -
Sr.No. | Argumen |
---|---|
1 | src Itu adalah gambar sumber. |
2 | dst Itu adalah gambar tujuan. |
3 | depth Ini adalah kedalaman dst. Nilai negatif (seperti -1) menunjukkan bahwa kedalamannya sama dengan sumbernya. |
4 | kernel Ini adalah kernel yang akan dipindai melalui gambar. |
5 | anchor Ini adalah posisi jangkar relatif terhadap kernelnya. Lokasi Titik (-1, -1) menunjukkan pusat secara default. |
6 | delta Ini adalah nilai yang akan ditambahkan ke setiap piksel selama konvolusi. Secara default adalah 0. |
7 | BORDER_DEFAULT Kami membiarkan nilai ini secara default. |
Selain metode filter2D, ada metode lain yang disediakan oleh kelas Imgproc. Mereka dijelaskan secara singkat -
Sr.No. | Metode & Deskripsi |
---|---|
1 | cvtColor(Mat src, Mat dst, int code, int dstCn) Ini mengubah gambar dari satu ruang warna ke ruang warna lainnya. |
2 | dilate(Mat src, Mat dst, Mat kernel) Ini melebarkan gambar dengan menggunakan elemen penataan tertentu. |
3 | equalizeHist(Mat src, Mat dst) Ini menyamakan histogram dari gambar grayscale. |
4 | filter2D(Mat src, Mat dst, int depth, Mat kernel, Point anchor, double delta) Ini menggabungkan gambar dengan kernel. |
5 | GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX) Ini mengaburkan gambar menggunakan filter Gaussian. |
6 | integral(Mat src, Mat sum) Ini menghitung integral dari suatu gambar. |
Contoh
Contoh berikut menunjukkan penggunaan kelas Imgproc untuk menerapkan operator Sobel ke gambar Grayscale.
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.highgui.Highgui;
import org.opencv.imgproc.Imgproc;
public class convolution {
public static void main( String[] args ) {
try {
int kernelSize = 9;
System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
Mat source = Highgui.imread("grayscale.jpg", Highgui.CV_LOAD_IMAGE_GRAYSCALE);
Mat destination = new Mat(source.rows(),source.cols(),source.type());
Mat kernel = new Mat(kernelSize,kernelSize, CvType.CV_32F) {
{
put(0,0,-1);
put(0,1,0);
put(0,2,1);
put(1,0-2);
put(1,1,0);
put(1,2,2);
put(2,0,-1);
put(2,1,0);
put(2,2,1);
}
};
Imgproc.filter2D(source, destination, -1, kernel);
Highgui.imwrite("output.jpg", destination);
} catch (Exception e) {
System.out.println("Error: " + e.getMessage());
}
}
}
Keluaran
Saat Anda menjalankan kode yang diberikan, output berikut akan terlihat -
Gambar asli
Gambar asli ini berbelit-belit dengan operator Sobel tepi vertikal, yang diberikan di bawah ini -
Arah Vertikal
-1 | 0 | 1 |
-2 | 0 | 2 |
-1 | 0 | 1 |
Gambar Konvolusi (Arah Vertikal)
Asli ini berbelit-belit dengan operator Sobel dari tepi horizontal, yang diberikan di bawah ini -
Arah Horizontal
-1 | -2 | -1 |
0 | 0 | 0 |
1 | 2 | 1 |