ความรู้เบื้องต้นเกี่ยวกับการแยกตัวประกอบด้วยตัวเลข

บทเรียนนี้ออกแบบมาเพื่อสำรวจการสลายตัวการคูณและการแยกตัวประกอบของจำนวนเต็มและคุณสมบัติการกระจาย

แยกปัจจัยร่วมเป็น 5 จาก 45

วิธีการแก้

Step 1:

รูปแบบขยายของ 45 เขียนดังนี้

45 = 40 + 5

Step 2:

ปัจจัยร่วมของ 5 และ 40 คือ 5 นั่นเอง

Step 3:

การใช้คุณสมบัติการกระจายเพื่อแยกตัวประกอบร่วม 5

45 = (40 + 5) = (5 × 8 + 5 × 1) = 5 (8 + 1)

ให้หมายเลข 36

(i) แยกตัวประกอบร่วมของ 2

(ii) แยกปัจจัยร่วมเป็น 6

วิธีการแก้

Step 1:

รูปแบบขยายของตัวเลขที่กำหนดจะเขียนดังนี้

36 = 30 + 6

Step 2:

การใช้คุณสมบัติการกระจาย

(i) การแยกปัจจัยร่วมกันของ 2

36 = 30 + 6 = 2 × 15 + 2 × 3 = 2 (15 + 3)

Step 3:

การใช้คุณสมบัติการกระจาย

(ii) การแยกตัวประกอบออกเป็นปัจจัยร่วมของ 6

36 = 30 + 6 = 5 × 6 + 1 × 6 = 6 (5 + 1)