Big Data Analytics - Régression logistique
La régression logistique est un modèle de classification dans lequel la variable de réponse est catégorique. Il s'agit d'un algorithme issu des statistiques et utilisé pour les problèmes de classification supervisée. En régression logistique, nous cherchons à trouver le vecteur β de paramètres dans l'équation suivante qui minimise la fonction de coût.
$$ logit (p_i) = ln \ left (\ frac {p_i} {1 - p_i} \ right) = \ beta_0 + \ beta_1x_ {1, i} + ... + \ beta_kx_ {k, i} $$
Le code suivant montre comment ajuster un modèle de régression logistique dans R. Nous utiliserons ici l'ensemble de données de spam pour démontrer la régression logistique, le même que celui utilisé pour Naive Bayes.
À partir des résultats des prédictions en termes de précision, nous constatons que le modèle de régression atteint une précision de 92,5% dans l'ensemble de test, par rapport aux 72% obtenus par le classificateur Naive Bayes.
library(ElemStatLearn)
head(spam)
# Split dataset in training and testing
inx = sample(nrow(spam), round(nrow(spam) * 0.8))
train = spam[inx,]
test = spam[-inx,]
# Fit regression model
fit = glm(spam ~ ., data = train, family = binomial())
summary(fit)
# Call:
# glm(formula = spam ~ ., family = binomial(), data = train)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -4.5172 -0.2039 0.0000 0.1111 5.4944
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -1.511e+00 1.546e-01 -9.772 < 2e-16 ***
# A.1 -4.546e-01 2.560e-01 -1.776 0.075720 .
# A.2 -1.630e-01 7.731e-02 -2.108 0.035043 *
# A.3 1.487e-01 1.261e-01 1.179 0.238591
# A.4 2.055e+00 1.467e+00 1.401 0.161153
# A.5 6.165e-01 1.191e-01 5.177 2.25e-07 ***
# A.6 7.156e-01 2.768e-01 2.585 0.009747 **
# A.7 2.606e+00 3.917e-01 6.652 2.88e-11 ***
# A.8 6.750e-01 2.284e-01 2.955 0.003127 **
# A.9 1.197e+00 3.362e-01 3.559 0.000373 ***
# Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
### Make predictions
preds = predict(fit, test, type = ’response’)
preds = ifelse(preds > 0.5, 1, 0)
tbl = table(target = test$spam, preds)
tbl
# preds
# target 0 1
# email 535 23
# spam 46 316
sum(diag(tbl)) / sum(tbl)
# 0.925