Boats & Streams - Contoh Terpecahkan
Q 1 - Kecepatan perahu di perairan tenang adalah 16 km / jam. Jika kecepatan aliran adalah 4 km / jam, temukan kecepatan hilir dan hulu.
A - 15,5
B - 20,12
C - 10,6
D - 18,10
Answer - B
Explanation
Downstream Speed = u + v = 16 + 4 = 20 km/hr
Upstream Speed = u - v = 16 - 4 = 12 km/hr
Q 2 - Seorang pria dapat mendayung ke hilir dengan kecepatan 18 km / jam dan ke atas dengan kecepatan 12 km / jam. Temukan kecepatannya di air tenang dan laju arus.
A - 16,3
B - 15,4
C - 15,3
D - 16,4
Answer - C
Explanation
Speed of the boat or swimmer in still water = 1/2 * (Downstream Speed + Upstream Speed)
= 1/2 * (18+12)
= 15 km/hr
Speed of the current = 1/2 * (Downstream Speed - Upstream Speed)
= 1/2 * (18-12)
= 3 km/hr
Q 3 - Seorang pria berenang ke hilir 28 km dalam 4 jam dan ke atas 12 km dalam 3 jam. Temukan kecepatannya di air tenang dan juga kecepatan arus.
A - 5,2
B - 5.5,1.5
C - 5.5,2.5
D - 5,1
Answer - B
Explanation
Downstream Speed (u) = 28/4 = 7 km/hr
Upstream Speed (v) = 12/3 = 4 km/hr
Speed of the boat or swimmer in still water = 1/2*(Downstream Speed + Upstream Speed)
= 1/2*(7+4)
= 5.5 km/hr
Speed of the current = 1/2*(Downstream Speed - Upstream Speed)
= 1/2*(7-4)
= 1.5 km/hr
Q 4 - Kecepatan perahu di air tenang adalah 15 km / jam. Dibutuhkan dua kali lebih lama untuk pergi ke hulu ke suatu titik daripada kembali ke hilir ke titik awal. Berapa kecepatan arus?
A - 4 km / jam
B - 3 km / jam
C - 2 km / jam
D - 5 km / jam
Answer - B
Explanation
Let speed of the current = S km/hr.
As per question,
Downstream Speed = 2*Upstream speed
15 + S = 2(15 - S)
S = 3 km/hr
Q 5 - Sebuah perahu menempuh jarak tertentu di hilir dalam 6 jam dan membutuhkan waktu 8 jam untuk kembali ke hulu ke titik awal. Jika kecepatan arus 3 km / jam, carilah kecepatan perahu di perairan yang tenang.
A - 1 km / jam
B - 4 km / jam
C - 3 km / jam
D - 2 km / jam
Answer - C
Explanation
t1 = 6 hrs
t2 = 8 hrs
v = 3 km/hr
u = ?
We know,
(u + v)t1 = (u - v)t2
(u + 3)6 = (u - 3)8
u = 3 km/hr
Q 6 - Kecepatan sungai Gangga adalah 5 km / jam. Sebuah perahu motor berjalan sejauh 28 km ke hulu dan kemudian kembali ke hilir ke titik awal. Jika kecepatannya di perairan tenang 9 km / jam, carilah total waktu tempuh.
A - 5 jam
B - 8 jam
C - 9 jam
H - 10 jam
Answer - C
Explanation
We know, Downstream speed = u + v = 9 + 5 = 14 km/hr
Upstream Speed = u - v = 9 - 5 = 4 km/hr
Speed = Distance/Time
∴ Time = Distance/Speed
∴ Total time taken = t1 + t2
= 28/4 + 28/14
= 7 + 2 = 9 hr
Q 7 - Sebuah perahu berjalan sejauh 32 km ke hulu dan 60 km di hilir dalam 9 jam. Juga menempuh 40 km ke hulu dan 84 km ke hilir dalam 12 jam. Temukan kecepatan perahu di air tenang dan kecepatan arusnya.
A - 10,2
B - 8,4
C - 9,3
D - 7,5
Answer - A
Explanation
Let, upstream speed = u km/hr
Downstream speed = d km/hr
32/u + 60/d = 9 (Time = Distance/Speed)
Simlarly,
40/u + 84/d = 12
32x + 60y = 9 ...(i) (Assuming 1/u = x and 1/d = y)
40x + 84y = 12 ...(ii)
(Equation(ii) * 4) - (Equation (i)*5), we get,
y = 1/12. So, x = 1/8
Hence, downstream speed = 12 km/hr
Upstream speed = 8 km/hr
So,
Speed of the boat in still water = 1/2*(12+8) = 10 km/hr
Speed of the current = 1/2*(12 - 8) = 2 km/hr
Q 8 - Kecepatan seorang perenang di air tenang adalah 12km / jam. Butuh 6 jam untuk berenang sampai jarak tertentu dan kembali ke titik awal. Kecepatan arus adalah 4km / jam. Temukan jarak antara kedua titik tersebut.
A - 15 km
B - 16 km
C - 14 km
D - 12 km
Answer - B
Explanation
Let distance = D
Downstream time = t1; Downstream Speed = 1/2*(12+4) = 8 km/hr
Upstream Time = t2; Upstream Speed = 1/2*(12-4) = 4 km/hr
Total time = t1 + t2
6 = (D/Upstream speed) + (D/Downstream speed)
6 = D/8 + D/4
D = 16 km
Q 9 - Sebuah perahu yang berjalan di hilir menempuh jarak 30 km dalam 2 jam. Saat kembali, perahu membutuhkan waktu 6 jam untuk menempuh jarak yang sama. Jika kecepatan arusnya setengah dari perahu, berapakah kecepatan perahu tersebut?
A - 15 km / jam
B - 54 km / jam
C - 10 km / jam
D - Tak satu pun dari ini
Answer - C
Explanation
Downstream Speed = 30/2 = 15 km/hr
Upstream Speed = 30/6 = 5 km/hr
Speed of the boat in still water = 1/2*(downstream speed + upstream speed)
= 1/2*(15+5)
= 10 km/hr
Q 10 - Sebuah kapal uap bergerak ke hilir dari satu titik ke titik lainnya dalam 4 jam. Ini mencakup jarak yang sama di hulu dalam 5 jam. Jika kecepatan aliran adalah 2 km / jam, jarak antara kedua pint adalah
A - 50 km
B - 60 km
C - 70 km
D - 80 km
Answer - D
Explanation
Let the distance be D km.
∴ Downstream Speed = D/4 km/hr
And Upstream Speed = D/5 km/hr
Given, Speed of current = 2 km/hr
Speed of the current = 1/2*(Downstream Speed - Upstream Speed)
2 = 1/2*(D/4 - D/5)
D = 80 km