Big Data Analytics - wykresy i wykresy

Pierwszym podejściem do analizy danych jest ich wizualna analiza. Celem tego jest zwykle znalezienie relacji między zmiennymi i jednowymiarowych opisów zmiennych. Możemy podzielić te strategie na -

  • W analizie jednoczynnikowej
  • Analiza wielowymiarowa

Jednowymiarowe metody graficzne

Univariateto termin statystyczny. W praktyce oznacza to, że chcemy analizować zmienną niezależnie od pozostałych danych. Działki, które pozwalają na to sprawnie to -

Wykresy pudełkowe

Wykresy pudełkowe są zwykle używane do porównywania rozkładów. To świetny sposób na wizualne sprawdzenie, czy istnieją różnice między dystrybucjami. Możemy zobaczyć, czy istnieją różnice w cenie diamentów o różnym szlifie.

# We will be using the ggplot2 library for plotting
library(ggplot2)  
data("diamonds")  

# We will be using the diamonds dataset to analyze distributions of numeric variables 
head(diamonds) 

#    carat   cut       color  clarity  depth  table   price    x     y     z 
# 1  0.23    Ideal       E      SI2    61.5    55     326     3.95  3.98  2.43 
# 2  0.21    Premium     E      SI1    59.8    61     326     3.89  3.84  2.31 
# 3  0.23    Good        E      VS1    56.9    65     327     4.05  4.07  2.31 
# 4  0.29    Premium     I      VS2    62.4    58     334     4.20  4.23  2.63 
# 5  0.31    Good        J      SI2    63.3    58     335     4.34  4.35  2.75 
# 6  0.24    Very Good   J      VVS2   62.8    57     336     3.94  3.96  2.48 

### Box-Plots
p = ggplot(diamonds, aes(x = cut, y = price, fill = cut)) + 
   geom_box-plot() + 
   theme_bw() 
print(p)

Na wykresie widać różnice w rozkładzie cen diamentów w różnych rodzajach szlifów.

Histogramy

source('01_box_plots.R')

# We can plot histograms for each level of the cut factor variable using 
facet_grid 
p = ggplot(diamonds, aes(x = price, fill = cut)) + 
   geom_histogram() + 
   facet_grid(cut ~ .) + 
   theme_bw() 

p  
# the previous plot doesn’t allow to visuallize correctly the data because of 
the differences in scale 
# we can turn this off using the scales argument of facet_grid  

p = ggplot(diamonds, aes(x = price, fill = cut)) + 
   geom_histogram() + 
   facet_grid(cut ~ ., scales = 'free') + 
   theme_bw() 
p  

png('02_histogram_diamonds_cut.png') 
print(p) 
dev.off()

Wynik powyższego kodu będzie następujący -

Wielowymiarowe metody graficzne

Wielowymiarowe metody graficzne stosowane w eksploracyjnej analizie danych mają na celu znalezienie zależności między różnymi zmiennymi. Istnieją dwa powszechnie używane sposoby osiągnięcia tego celu: wykreślenie macierzy korelacji zmiennych numerycznych lub po prostu wykreślenie surowych danych jako macierzy wykresów punktowych.

Aby to zademonstrować, użyjemy zestawu danych diamentów. Aby postępować zgodnie z kodem, otwórz skryptbda/part2/charts/03_multivariate_analysis.R.

library(ggplot2)
data(diamonds) 

# Correlation matrix plots  
keep_vars = c('carat', 'depth', 'price', 'table') 
df = diamonds[, keep_vars]  
# compute the correlation matrix 
M_cor = cor(df) 

#          carat       depth      price      table 
# carat 1.00000000  0.02822431  0.9215913  0.1816175 
# depth 0.02822431  1.00000000 -0.0106474 -0.2957785 
# price 0.92159130 -0.01064740  1.0000000  0.1271339 
# table 0.18161755 -0.29577852  0.1271339  1.0000000  

# plots 
heat-map(M_cor)

Kod wygeneruje następujący wynik -

To jest podsumowanie, mówi nam, że istnieje silna korelacja między ceną a daszkiem, a niewiele między innymi zmiennymi.

Macierz korelacji może być przydatna, gdy mamy dużą liczbę zmiennych, w którym to przypadku wykreślenie surowych danych nie byłoby praktyczne. Jak wspomniano, możliwe jest również pokazanie surowych danych -

library(GGally)
ggpairs(df)

Na wykresie widzimy, że wyniki wyświetlane na mapie ciepła są potwierdzone, istnieje korelacja 0,922 między zmiennymi cenowymi i karatowymi.

Zależność tę można zwizualizować na wykresie rozrzutu cena-karat znajdującym się w indeksie (3, 1) macierzy wykresu rozrzutu.