Big Data Analytics - Wprowadzenie do R.
Ta sekcja jest poświęcona wprowadzeniu użytkowników w język programowania R. R można pobrać ze strony internetowej Cran . Dla użytkowników Windows przydatne jest zainstalowanie rtools i rstudio IDE .
Ogólna koncepcja R ma służyć jako interfejs do innych programów opracowanych w językach kompilowanych, takich jak C, C ++ i Fortran, oraz zapewnić użytkownikowi interaktywne narzędzie do analizy danych.
Przejdź do folderu pliku zip książki bda/part2/R_introduction i otwórz R_introduction.Rprojplik. Otworzy się sesja RStudio. Następnie otwórz plik 01_vectors.R. Uruchom skrypt wiersz po wierszu i postępuj zgodnie z komentarzami w kodzie. Inną przydatną opcją do nauki jest po prostu wpisanie kodu, co pomoże ci przyzwyczaić się do składni języka R. W R komentarze są zapisane symbolem #.
Aby wyświetlić wyniki działania kodu R w książce, po ocenie kodu, wyniki zwracane przez R są komentowane. W ten sposób możesz skopiować, wkleić kod do książki i wypróbować bezpośrednio jego sekcje w R.
# Create a vector of numbers
numbers = c(1, 2, 3, 4, 5)
print(numbers)
# [1] 1 2 3 4 5
# Create a vector of letters
ltrs = c('a', 'b', 'c', 'd', 'e')
# [1] "a" "b" "c" "d" "e"
# Concatenate both
mixed_vec = c(numbers, ltrs)
print(mixed_vec)
# [1] "1" "2" "3" "4" "5" "a" "b" "c" "d" "e"
Przeanalizujmy, co się stało w poprzednim kodzie. Widzimy, że można tworzyć wektory z liczbami i literami. Nie musieliśmy wcześniej mówić R, jakiego typu danych potrzebowaliśmy. Wreszcie udało nam się stworzyć wektor zawierający zarówno cyfry, jak i litery. Wektor mixed_vec zmusił liczby do znaku, możemy to zobaczyć, wizualizując, jak wartości są drukowane w cudzysłowach.
Poniższy kod przedstawia typ danych różnych wektorów zwracanych przez klasę funkcji. Często używa się funkcji klasy do „przesłuchania” obiektu, pytając go, jaka jest jego klasa.
### Evaluate the data types using class
### One dimensional objects
# Integer vector
num = 1:10
class(num)
# [1] "integer"
# Numeric vector, it has a float, 10.5
num = c(1:10, 10.5)
class(num)
# [1] "numeric"
# Character vector
ltrs = letters[1:10]
class(ltrs)
# [1] "character"
# Factor vector
fac = as.factor(ltrs)
class(fac)
# [1] "factor"
R obsługuje również obiekty dwuwymiarowe. W poniższym kodzie znajdują się przykłady dwóch najpopularniejszych struktur danych używanych w R: macierz i data.frame.
# Matrix
M = matrix(1:12, ncol = 4)
# [,1] [,2] [,3] [,4]
# [1,] 1 4 7 10
# [2,] 2 5 8 11
# [3,] 3 6 9 12
lM = matrix(letters[1:12], ncol = 4)
# [,1] [,2] [,3] [,4]
# [1,] "a" "d" "g" "j"
# [2,] "b" "e" "h" "k"
# [3,] "c" "f" "i" "l"
# Coerces the numbers to character
# cbind concatenates two matrices (or vectors) in one matrix
cbind(M, lM)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# [1,] "1" "4" "7" "10" "a" "d" "g" "j"
# [2,] "2" "5" "8" "11" "b" "e" "h" "k"
# [3,] "3" "6" "9" "12" "c" "f" "i" "l"
class(M)
# [1] "matrix"
class(lM)
# [1] "matrix"
# data.frame
# One of the main objects of R, handles different data types in the same object.
# It is possible to have numeric, character and factor vectors in the same data.frame
df = data.frame(n = 1:5, l = letters[1:5])
df
# n l
# 1 1 a
# 2 2 b
# 3 3 c
# 4 4 d
# 5 5 e
Jak pokazano w poprzednim przykładzie, możliwe jest użycie różnych typów danych w tym samym obiekcie. Ogólnie rzecz biorąc, w ten sposób dane są prezentowane w bazach danych, API częścią danych jest tekst lub wektory znakowe i inne wartości liczbowe. Zadaniem analityka jest określenie, który typ danych statystycznych należy przypisać, a następnie użycie do tego prawidłowego typu danych R. W statystykach zwykle uważamy, że zmienne są następujących typów -
- Numeric
- Nominalne lub kategorialne
- Ordinal
W R wektor może należeć do następujących klas -
- Liczbowo - liczba całkowita
- Factor
- Zamówiony współczynnik
R zapewnia typ danych dla każdego statystycznego typu zmiennej. Uporządkowany współczynnik jest jednak rzadko używany, ale może zostać utworzony przez współczynnik funkcji lub uporządkowany.
W poniższej sekcji omówiono pojęcie indeksowania. Jest to dość powszechna operacja i dotyczy problemu wybierania fragmentów obiektu i dokonywania w nich transformacji.
# Let's create a data.frame
df = data.frame(numbers = 1:26, letters)
head(df)
# numbers letters
# 1 1 a
# 2 2 b
# 3 3 c
# 4 4 d
# 5 5 e
# 6 6 f
# str gives the structure of a data.frame, it’s a good summary to inspect an object
str(df)
# 'data.frame': 26 obs. of 2 variables:
# $ numbers: int 1 2 3 4 5 6 7 8 9 10 ...
# $ letters: Factor w/ 26 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8 9 10 ...
# The latter shows the letters character vector was coerced as a factor.
# This can be explained by the stringsAsFactors = TRUE argumnet in data.frame
# read ?data.frame for more information
class(df)
# [1] "data.frame"
### Indexing
# Get the first row
df[1, ]
# numbers letters
# 1 1 a
# Used for programming normally - returns the output as a list
df[1, , drop = TRUE]
# $numbers
# [1] 1
#
# $letters
# [1] a
# Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z
# Get several rows of the data.frame
df[5:7, ]
# numbers letters
# 5 5 e
# 6 6 f
# 7 7 g
### Add one column that mixes the numeric column with the factor column
df$mixed = paste(df$numbers, df$letters, sep = ’’)
str(df)
# 'data.frame': 26 obs. of 3 variables:
# $ numbers: int 1 2 3 4 5 6 7 8 9 10 ...
# $ letters: Factor w/ 26 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8 9 10 ...
# $ mixed : chr "1a" "2b" "3c" "4d" ...
### Get columns
# Get the first column
df[, 1]
# It returns a one dimensional vector with that column
# Get two columns
df2 = df[, 1:2]
head(df2)
# numbers letters
# 1 1 a
# 2 2 b
# 3 3 c
# 4 4 d
# 5 5 e
# 6 6 f
# Get the first and third columns
df3 = df[, c(1, 3)]
df3[1:3, ]
# numbers mixed
# 1 1 1a
# 2 2 2b
# 3 3 3c
### Index columns from their names
names(df)
# [1] "numbers" "letters" "mixed"
# This is the best practice in programming, as many times indeces change, but
variable names don’t
# We create a variable with the names we want to subset
keep_vars = c("numbers", "mixed")
df4 = df[, keep_vars]
head(df4)
# numbers mixed
# 1 1 1a
# 2 2 2b
# 3 3 3c
# 4 4 4d
# 5 5 5e
# 6 6 6f
### subset rows and columns
# Keep the first five rows
df5 = df[1:5, keep_vars]
df5
# numbers mixed
# 1 1 1a
# 2 2 2b
# 3 3 3c
# 4 4 4d
# 5 5 5e
# subset rows using a logical condition
df6 = df[df$numbers < 10, keep_vars]
df6
# numbers mixed
# 1 1 1a
# 2 2 2b
# 3 3 3c
# 4 4 4d
# 5 5 5e
# 6 6 6f
# 7 7 7g
# 8 8 8h
# 9 9 9i