Reihenfolge der Operationen mit ganzen Zahlen und Gruppierungssymbolen
In mathematischen Ausdrücken werden Gruppierungssymbole wie Klammern [], Klammern {} und Klammern () verwendet. Wir bewerten nun Ausdrücke, die die Reihenfolge von Operationen mit ganzen Zahlen betreffen, unter Verwendung solcher Gruppierungssymbole.
Bewerten Sie den folgenden Ausdruck
[3 + (15 + 6) ÷ 7] × 4
Lösung
Step 1:
Wir müssen die Reihenfolge der Operationen PEMDAS befolgen.
Wir beginnen mit der innersten Gruppierung, den Klammern (15 + 6).
[3 + (15 + 6) ÷ 7] × 4 =
[3 + 21 ÷ 7] × 4
Step 2:
Als nächstes bewerten wir die verbleibende Gruppierung in Klammern [3 + 21 ÷ 7].
Step 3:
Wir führen alle Multiplikationen und Divisionen vor jeder Addition oder Subtraktion durch
[3 + 21 ÷ 7]]
[3 + 3] =
6
Step 4:
Wir bewerten dann den letzten Ausdruck
6 × 4 = 24
Step 5:
Also [3 + (15 + 6) ÷ 7] × 4 = 24
Bewerten Sie den folgenden Ausdruck
[37 - (12 - 9) × 3] ÷ 7
Lösung
Step 1:
Wir folgen der Geschäftsordnung PEMDAS.
Wir beginnen mit der innersten Gruppierung, den Klammern (12 - 9).
[37 - (12 − 9) × 3] ÷ 7 =
[37 - 3 × 3] ÷ 7
Step 2:
Als nächstes bewerten wir die verbleibende Gruppierung in Klammern [37 −3 × 3]
Step 3:
Wir führen alle Multiplikationen und Divisionen vor jeder Addition oder Subtraktion durch
[37 - 3 × 3] =
[37 - 9] =
28
Step 4:
Wir bewerten dann den letzten Ausdruck
28 ÷ 7 = 4
Step 5:
[37 - (12 - 9) × 3] ÷ 7 = 4