DAA-스패닝 트리
ㅏ spanning tree 모든 정점이 최소 간선 수로 연결된 무 방향 그래프의 하위 집합입니다.
모든 정점이 그래프로 연결되어 있으면 스패닝 트리가 하나 이상 존재합니다. 그래프에는 스패닝 트리가 둘 이상있을 수 있습니다.
속성
- 스패닝 트리에는주기가 없습니다.
- 모든 정점은 다른 정점에서 도달 할 수 있습니다.
예
다음 그래프에서 강조 표시된 모서리는 스패닝 트리를 형성합니다.
최소 스패닝 트리
ㅏ Minimum Spanning Tree (MST)가능한 최소 총 간선 가중치와 함께 모든 정점을 연결하는 연결된 가중치 무 방향 그래프의 간선 하위 집합입니다. MST를 도출하기 위해 Prim의 알고리즘 또는 Kruskal의 알고리즘을 사용할 수 있습니다. 따라서이 장에서는 Prim의 알고리즘에 대해 설명합니다.
우리가 논의했듯이 하나의 그래프에는 둘 이상의 스패닝 트리가있을 수 있습니다. 만일 거기에n 정점의 수, 스패닝 트리는 n - 1가장자리 수. 이 맥락에서 그래프의 각 모서리가 가중치와 연관되고 스패닝 트리가 둘 이상있는 경우 그래프의 최소 스패닝 트리를 찾아야합니다.
또한 중복 가중치 간선이있는 경우 그래프에 최소 스패닝 트리가 여러 개있을 수 있습니다.
위의 그래프에서 최소 스패닝 트리는 아니지만 스패닝 트리를 보여주었습니다. 이 스패닝 트리의 비용은 (5 + 7 + 3 + 3 + 5 + 8 + 3 + 4) = 38입니다.
Prim의 알고리즘을 사용하여 최소 스패닝 트리를 찾습니다.
프림의 알고리즘
Prim의 알고리즘은 최소 스패닝 트리를 찾는 탐욕스러운 접근 방식입니다. 이 알고리즘에서 MST를 형성하기 위해 임의의 정점에서 시작할 수 있습니다.
Algorithm: MST-Prim’s (G, w, r)
for each u є G.V
u.key = ∞
u.∏ = NIL
r.key = 0
Q = G.V
while Q ≠ Ф
u = Extract-Min (Q)
for each v є G.adj[u]
if each v є Q and w(u, v) < v.key
v.∏ = u
v.key = w(u, v)
Extract-Min 함수는 최소 에지 비용으로 정점을 반환합니다. 이 기능은 최소 힙에서 작동합니다.
예
Prim의 알고리즘을 사용하면 모든 정점에서 시작할 수 있습니다. 정점에서 시작하겠습니다. 1.
꼭지점 3 정점에 연결됨 1 최소 엣지 비용으로 엣지 (1, 2) 스패닝 트리에 추가됩니다.
다음으로 가장자리 (2, 3) 이것은 모서리 사이의 최소값으로 간주됩니다. {(1, 2), (2, 3), (3, 4), (3, 7)}.
다음 단계에서 우리는 (3, 4) 과 (2, 4)최소 비용으로. 가장자리(3, 4) 무작위로 선택됩니다.
비슷한 방식으로 가장자리 (4, 5), (5, 7), (7, 8), (6, 8) 과 (6, 9)선택됩니다. 모든 정점을 방문하면 이제 알고리즘이 중지됩니다.
스패닝 트리의 비용은 (2 + 2 + 3 + 2 + 5 + 2 + 3 + 4) = 23입니다.이 그래프에는 다음보다 적은 비용을 가진 스패닝 트리가 더 이상 없습니다. 23.