อุปกรณ์อิเล็กทรอนิกส์พื้นฐาน - คาปาซิเตอร์

ตัวเก็บประจุเป็นส่วนประกอบแบบพาสซีฟที่มีความสามารถในการจัดเก็บพลังงานในรูปแบบของความต่างศักย์ระหว่างแผ่นเปลือกโลก ต่อต้านการเปลี่ยนแปลงแรงดันไฟฟ้าอย่างกะทันหัน ประจุจะถูกเก็บไว้ในรูปแบบของความต่างศักย์ระหว่างแผ่นสองแผ่นซึ่งรูปแบบจะเป็นบวกและลบขึ้นอยู่กับทิศทางของการจัดเก็บประจุ

พื้นที่ที่ไม่นำไฟฟ้าอยู่ระหว่างแผ่นเปลือกโลกทั้งสองนี้ซึ่งเรียกว่าเป็น dielectric. อิเล็กทริกนี้อาจเป็นสูญญากาศอากาศไมกากระดาษเซรามิกอลูมิเนียมเป็นต้นชื่อของตัวเก็บประจุกำหนดโดยอิเล็กทริกที่ใช้

สัญลักษณ์และหน่วย

หน่วยมาตรฐานสำหรับความจุคือ Farads โดยทั่วไปค่าของคาปาซิเตอร์ที่มีจะอยู่ในลำดับไมโครฟาเรดพิโคฟารัดและนาโนฟารัด สัญลักษณ์ของตัวเก็บประจุมีดังที่แสดงด้านล่าง

ความจุของตัวเก็บประจุเป็นสัดส่วนกับระยะห่างระหว่างเพลตและเป็นสัดส่วนผกผันกับพื้นที่ของเพลต นอกจากนี้ยิ่งวัสดุอนุญาตสูงเท่าใดความจุก็จะสูงขึ้นเท่านั้น permittivityของสื่อจะอธิบายว่ามีการสร้างฟลักซ์ไฟฟ้าเท่าใดต่อหน่วยประจุในตัวกลางนั้น ภาพต่อไปนี้แสดงตัวเก็บประจุที่ใช้งานได้จริง

เมื่อแผ่นสองแผ่นที่มีพื้นที่ A เท่ากันและความกว้างเท่ากันวางขนานกันโดยมีระยะห่าง d และถ้าพลังงานบางส่วนถูกนำไปใช้กับแผ่นเปลือกโลกความจุของตัวเก็บประจุแบบแผ่นขนานนั้นสามารถเรียกได้ว่าเป็น -

$$ C \: \: = \: \: \ frac {\ varepsilon_ {0} \: \: \ varepsilon_ {r} \: \: d} {A} $$

ที่ไหน

C = ความจุของตัวเก็บประจุ

$ \ varepsilon_ {0} $ = การอนุญาตของพื้นที่ว่าง

$ \ varepsilon_ {r} $ = การอนุญาตของสื่ออิเล็กทริก

d = ระยะห่างระหว่างจาน

A = พื้นที่ของแผ่นตัวนำทั้งสอง

เมื่อใช้แรงดันไฟฟ้าบางส่วนประจุจะสะสมบนแผ่นขนานทั้งสองของตัวเก็บประจุ การสะสมประจุนี้เกิดขึ้นอย่างช้าๆและเมื่อแรงดันไฟฟ้าทั่วตัวเก็บประจุเท่ากับแรงดันไฟฟ้าที่ใช้การชาร์จจะหยุดลงเนื่องจากแรงดันไฟฟ้าเข้าเท่ากับแรงดันไฟฟ้าที่ออก

อัตราการชาร์จขึ้นอยู่กับค่าของความจุ ยิ่งค่าความจุมากเท่าใดอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าในจานก็จะยิ่งช้าลงเท่านั้น

การทำงานของ Capacitor

ตัวเก็บประจุสามารถเข้าใจได้ว่าเป็นส่วนประกอบแบบพาสซีฟสองขั้วซึ่งเก็บพลังงานไฟฟ้า พลังงานไฟฟ้านี้ถูกเก็บไว้ในสนามไฟฟ้าสถิต

ในขั้นต้นประจุลบและบวกบนจานสองแผ่นของตัวเก็บประจุจะอยู่ในสภาวะสมดุล ไม่มีแนวโน้มที่ตัวเก็บประจุจะถูกชาร์จหรือคายประจุ ประจุลบเกิดจากการสะสมของอิเล็กตรอนในขณะที่ประจุบวกเกิดจากการพร่องของอิเล็กตรอน เมื่อสิ่งนี้เกิดขึ้นโดยไม่มีการเรียกเก็บเงินจากภายนอกใด ๆ สถานะนี้คือelectrostaticเงื่อนไข. รูปด้านล่างแสดงตัวเก็บประจุที่มีประจุไฟฟ้าสถิต

การสะสมและการสูญเสียอิเล็กตรอนตามวัฏจักรบวกและลบที่แตกต่างกันของแหล่งจ่ายไฟฟ้ากระแสสลับสามารถเข้าใจได้ว่าเป็น "การไหลของกระแส" นี้เรียกว่าเป็นDisplacement Current. ทิศทางของการไหลของกระแสนี้จะเปลี่ยนไปเรื่อย ๆ เนื่องจากเป็น AC

การชาร์จตัวเก็บประจุ

เมื่อได้รับแรงดันไฟฟ้าภายนอกประจุไฟฟ้าจะถูกเปลี่ยนเป็นประจุไฟฟ้าสถิต สิ่งนี้เกิดขึ้นในขณะที่ตัวเก็บประจุกำลังชาร์จ ศักยภาพเชิงบวกของอุปทานดึงดูดอิเล็กตรอนจากแผ่นบวกของตัวเก็บประจุทำให้มีค่าเป็นบวกมากขึ้น ในขณะที่ศักย์ลบของแหล่งจ่ายจะบังคับให้อิเล็กตรอนไปที่แผ่นลบของตัวเก็บประจุทำให้มีค่าเป็นลบมากขึ้น รูปด้านล่างอธิบายสิ่งนี้

ในระหว่างกระบวนการชาร์จนี้อิเล็กตรอนจะเคลื่อนที่ผ่านแหล่งจ่ายไฟ DC แต่ไม่ผ่าน dielectric ซึ่งเป็นไฟล์ insulator. การกระจัดนี้มีขนาดใหญ่เมื่อตัวเก็บประจุเริ่มชาร์จ แต่จะลดลงเมื่อชาร์จ ตัวเก็บประจุจะหยุดชาร์จเมื่อแรงดันไฟฟ้าคร่อมตัวเก็บประจุเท่ากับแรงดันไฟฟ้า

ให้เราดูว่าเกิดอะไรขึ้นกับอิเล็กทริกเมื่อตัวเก็บประจุเริ่มชาร์จ

พฤติกรรมอิเล็กทริก

เมื่อประจุเกาะอยู่บนแผ่นของตัวเก็บประจุจะเกิดสนามไฟฟ้าสถิต ความแข็งแรงของสนามไฟฟ้าสถิตนี้ขึ้นอยู่กับขนาดของประจุไฟฟ้าบนแผ่นเปลือกโลกและการอนุญาตของวัสดุอิเล็กทริกPermittivity คือการวัดอิเล็กทริกว่ามันปล่อยให้เส้นไฟฟ้าสถิตผ่านไปได้ไกลแค่ไหน

อิเล็กทริกเป็นฉนวน มีอิเล็กตรอนอยู่ในวงโคจรชั้นนอกสุดของอะตอม ให้เราสังเกตว่าพวกเขาได้รับผลกระทบอย่างไร เมื่อไม่มีประจุบนเพลตอิเล็กตรอนในอิเล็กทริกจะเคลื่อนที่เป็นวงโคจร ดังแสดงในรูปด้านล่าง

เมื่อเกิดการสะสมของประจุอิเล็กตรอนมีแนวโน้มที่จะเคลื่อนที่ไปยังแผ่นที่มีประจุบวก แต่ก็ยังคงหมุนเวียนอยู่ดังแสดงในรูป

ถ้าประจุเพิ่มขึ้นอีกวงโคจรจะขยายมากขึ้น แต่ถ้ามันยังคงเพิ่มขึ้นอิเล็กทริกbreaks downการทำให้ตัวเก็บประจุสั้นลง ตอนนี้ตัวเก็บประจุที่ชาร์จเต็มแล้วก็พร้อมที่จะปล่อยออกมา ก็เพียงพอแล้วหากเราจัดเตรียมเส้นทางให้พวกเขาเดินทางจากจานลบไปยังจานบวก อิเล็กตรอนไหลโดยไม่มีแหล่งจ่ายภายนอกเนื่องจากมีจำนวนอิเล็กตรอนมากเกินไปในด้านหนึ่งและแทบจะไม่เหลืออิเล็กตรอนอีกเลย ความไม่สมดุลนี้ปรับโดยdischarge ของตัวเก็บประจุ

นอกจากนี้เมื่อพบเส้นทางการปลดปล่อยอะตอมในวัสดุอิเล็กทริกมักจะเข้าสู่สภาวะปกติ circular orbitและด้วยเหตุนี้จึงบังคับให้อิเล็กตรอนหลุดออกไป การคายประจุแบบนี้ทำให้ตัวเก็บประจุสามารถส่งกระแสไฟฟ้าได้สูงในช่วงเวลาสั้น ๆ เช่นเดียวกับในแฟลชกล้อง

การเข้ารหัสสี

หากต้องการทราบค่าของตัวเก็บประจุโดยปกติจะมีข้อความดังนี้ -

n35 = 0.35nF หรือ 3n5 = 3.5nF หรือ 35n = 35nF และอื่น ๆ

บางครั้งเครื่องหมายจะเหมือน 100K ซึ่งหมายความว่า k = 1000pF จากนั้นค่าจะเป็น 100 × 1000pF = 100nF

แม้ว่าจะมีการใช้เครื่องหมายตัวเลขเหล่านี้ในปัจจุบัน แต่รูปแบบการเข้ารหัสสีสากลก็ได้รับการพัฒนามานานแล้วเพื่อให้เข้าใจถึงค่าของตัวเก็บประจุ การระบุรหัสสีมีดังที่ระบุด้านล่าง

สีวง เลข A และ B ตัวคูณ ความอดทน (t)> 10pf ความอดทน (t) <10pf ค่าสัมประสิทธิ์อุณหภูมิ
ดำ 0 × 1 ± 20% ± 2.0pF
สีน้ำตาล 1 × 10 ± 1% ± 0.1pF -33 × 10 -6
แดง 2 × 100 ± 2% ± 0.25pF -75 × 10 -6
ส้ม 3 × 1,000 ± 3% -150 × 10 -6
สีเหลือง 4 × 10,000 ± 4% -220 × 10 -6
เขียว 5 × 100,000 ± 5% ± 0.5pF -330 × 10 -6
สีน้ำเงิน 6 × 1,000000 -470 × 10 -6
ไวโอเล็ต 7 -750 × 10 -6
สีเทา 8 × 0.01 + 80%, -20%
สีขาว 9 × 0.1 ± 10% ± 1.0pF
ทอง × 0.1 ± 5%
เงิน × 0.01 ± 10%

ข้อบ่งชี้เหล่านี้ใช้เพื่อระบุมูลค่าของตัวเก็บประจุ

ในตัวเก็บประจุแบบแบนด์ทั้งห้านี้แถบสองแถบแรกแสดงถึงตัวเลขวงที่สามหมายถึงตัวคูณที่สี่สำหรับความทนทานและที่ห้าหมายถึงแรงดันไฟฟ้า ให้เราดูตัวอย่างเพื่อทำความเข้าใจกระบวนการเข้ารหัสสี

Example 1 - กำหนดค่าของตัวเก็บประจุด้วยรหัสสีเหลืองม่วงส้มขาวและแดง

Solution- ค่าของสีเหลืองคือ 4, สีม่วงคือ 7, สีส้มคือ 3 ซึ่งแสดงถึงตัวคูณ สีขาวคือ± 10 ซึ่งเป็นค่าความคลาดเคลื่อน สีแดงแสดงถึงแรงดันไฟฟ้า แต่เพื่อให้ทราบพิกัดแรงดันไฟฟ้าเรามีตารางอื่นซึ่งต้องทราบวงดนตรีเฉพาะที่ตัวเก็บประจุนี้อยู่

ดังนั้นค่าของตัวเก็บประจุคือ 47nF, 10% 250v (แรงดันไฟฟ้าสำหรับแถบ V)

ตารางต่อไปนี้แสดงวิธีกำหนดแรงดันไฟฟ้าขึ้นอยู่กับแถบที่ตัวเก็บประจุอยู่

สีวง ระดับแรงดันไฟฟ้า (V)
TYPE J TYPE K TYPE L TYPE M TYPE N
ดำ 4 100 10 10
สีน้ำตาล 6 200 100 1.6
แดง 10 300 250 4 35
ส้ม 15 400 40
สีเหลือง 20 500 400 6.3 6
เขียว 25 600 16 15
สีน้ำเงิน 35 700 630 20
ไวโอเล็ต 50 800
สีเทา 900 25 25
สีขาว 3 1,000 2.5 3
ทอง พ.ศ. 2543
เงิน

ด้วยความช่วยเหลือของตารางนี้ระดับแรงดันไฟฟ้าสำหรับแต่ละแถบของตัวเก็บประจุจะทราบตามสีที่กำหนด ประเภทของการจัดอันดับแรงดันไฟฟ้ายังระบุประเภทของตัวเก็บประจุ ตัวอย่างเช่นตัว TYPE J คือตัวเก็บประจุแทนทาลัมแบบจุ่ม, ตัวเก็บประจุชนิด K คือตัวเก็บประจุไมกา, ตัวกรอง TYPE L คือตัวเก็บประจุโพลีสไตรีน, TYPE M คือตัวเก็บประจุแบบ Electrolytic Band 4 และ TYPE N คือตัวเก็บประจุแบบ Electrolytic Band 3 ทุกวันนี้การเข้ารหัสสีถูกแทนที่ด้วยการพิมพ์ค่าของตัวเก็บประจุอย่างง่ายตามที่กล่าวไว้ก่อนหน้านี้

ปฏิกิริยา Capacitive

นี่เป็นคำสำคัญ Capacitive Reactance คือการต่อต้านที่เสนอโดยตัวเก็บประจุกับการไหลของกระแสสลับหรือเพียงแค่กระแส AC ตัวเก็บประจุต่อต้านการเปลี่ยนแปลงของการไหลของกระแสและด้วยเหตุนี้จึงแสดงการต่อต้านซึ่งสามารถเรียกได้ว่าเป็นreactanceเนื่องจากควรพิจารณาความถี่ของกระแสอินพุตพร้อมกับความต้านทานที่เสนอด้วย

Symbol: XC

ในวงจร capacitive ล้วนๆกระแส IC leads แรงดันไฟฟ้าที่ใช้ 90 °

ค่าสัมประสิทธิ์อุณหภูมิของตัวเก็บประจุ

การเปลี่ยนแปลงสูงสุดใน Capacitanceของตัวเก็บประจุในช่วงอุณหภูมิที่กำหนดสามารถทราบได้จากค่าสัมประสิทธิ์อุณหภูมิของตัวเก็บประจุ ระบุว่าเมื่ออุณหภูมิสูงกว่าจุดหนึ่งการเปลี่ยนแปลงความจุของตัวเก็บประจุที่อาจเกิดขึ้นเข้าใจว่าเป็นtemperature coefficient of capacitors.

ตัวเก็บประจุทั้งหมดมักผลิตขึ้นโดยพิจารณาจากอุณหภูมิอ้างอิงที่ 25 ° C ดังนั้นค่าสัมประสิทธิ์อุณหภูมิของตัวเก็บประจุจึงถูกนำมาพิจารณาสำหรับค่าของอุณหภูมิที่สูงกว่าและต่ำกว่าค่านี้