ฟัซซี่ลอจิก - การหาปริมาณ

ในการสร้างแบบจำลองข้อความภาษาธรรมชาติข้อความเชิงปริมาณมีบทบาทสำคัญ หมายความว่า NL ขึ้นอยู่กับการสร้างเชิงปริมาณซึ่งมักจะรวมถึงแนวคิดที่คลุมเครือเช่น "เกือบทั้งหมด" "หลาย" ฯลฯ ต่อไปนี้เป็นตัวอย่างบางส่วนของการหาปริมาณ -

  • นักเรียนทุกคนสอบผ่าน
  • รถสปอร์ตราคาแพงทุกคัน
  • นักเรียนหลายคนสอบผ่าน
  • รถสปอร์ตหลายคันมีราคาแพง

ในตัวอย่างข้างต้นตัวระบุปริมาณ "ทุกคน" และ "หลายคน" จะใช้กับข้อ จำกัด ที่ชัดเจนของ "นักเรียน" ตลอดจนขอบเขตที่ชัดเจน "(ผู้ที่) สอบผ่าน" และ "รถยนต์" รวมถึง "กีฬา" ที่ชัดเจน

เหตุการณ์ที่ไม่ชัดเจนวิธีการที่คลุมเครือและความแปรปรวนที่ไม่ชัดเจน

ด้วยความช่วยเหลือของตัวอย่างเราสามารถเข้าใจแนวคิดข้างต้น สมมติว่าเราเป็นผู้ถือหุ้นของ บริษัท ชื่อ ABC และในปัจจุบัน บริษัท กำลังขายหุ้นแต่ละหุ้นในราคา₹ 40 มี บริษัท สามแห่งที่มีธุรกิจคล้ายกับ ABC แต่เสนอขายหุ้นในอัตราที่แตกต่างกัน - ₹ 100 ต่อหุ้น, 85 ต่อหุ้นและ₹ 60 ต่อหุ้นตามลำดับ

ตอนนี้การกระจายความน่าจะเป็นของการครอบครองราคานี้เป็นดังนี้ -

ราคา 100 บาท ฿ 85 ฿ 60
ความน่าจะเป็น 0.3 0.5 0.2

ตอนนี้จากทฤษฎีความน่าจะเป็นมาตรฐานการแจกแจงข้างต้นให้ค่าเฉลี่ยของราคาที่คาดหวังดังต่อไปนี้ -

100 × 0.3 + 85 × 0.5 + 60 × 0.2 = 84.5 $

และจากทฤษฎีความน่าจะเป็นมาตรฐานการแจกแจงข้างต้นให้ความแปรปรวนของราคาที่คาดหวังดังต่อไปนี้ -

$ (100 - 84.5) 2 × 0.3 + (85 - 84.5) 2 × 0.5 + (60 - 84.5) 2 × 0.2 = 124.825 $

สมมติว่าระดับการเป็นสมาชิก 100 ในชุดนี้คือ 0.7, 85 คือ 1 และระดับการเป็นสมาชิกคือ 0.5 สำหรับค่า 60 สิ่งเหล่านี้สามารถสะท้อนให้เห็นได้ในชุดที่คลุมเครือต่อไปนี้ -

$$ \ left \ {\ frac {0.7} {100}, \: \ frac {1} {85}, \: \ frac {0.5} {60}, \ right \} $$

ชุดคลุมเครือที่ได้รับในลักษณะนี้เรียกว่าเหตุการณ์ที่เลือนลาง

เราต้องการความน่าจะเป็นของเหตุการณ์ฟัซซี่ที่การคำนวณของเราให้ -

0.7 × 0.3 + 1 × 0.5 + 0.5 × 0.2 = 0.21 + 0.5 + 0.1 = 0.81 $

ตอนนี้เราต้องคำนวณค่าเฉลี่ยฟัซซีและความแปรปรวนแบบฟัซซี่การคำนวณมีดังนี้ -

Fuzzy_mean $ = \ left (\ frac {1} {0.81} \ right) × (100 × 0.7 × 0.3 + 85 × 1 × 0.5 + 60 × 0.5 × 0.2) $

$ = 85.8 $

Fuzzy_Variance $ = 7496.91 - 7361.91 = 135.27 $