R - Matrizes

Matrizes são os objetos R nos quais os elementos são organizados em um layout retangular bidimensional. Eles contêm elementos dos mesmos tipos atômicos. Embora possamos criar uma matriz contendo apenas caracteres ou apenas valores lógicos, eles não têm muita utilidade. Usamos matrizes contendo elementos numéricos para serem usadas em cálculos matemáticos.

Uma matriz é criada usando o matrix() função.

Sintaxe

A sintaxe básica para criar uma matriz em R é -

matrix(data, nrow, ncol, byrow, dimnames)

A seguir está a descrição dos parâmetros usados ​​-

  • data é o vetor de entrada que se torna os elementos de dados da matriz.

  • nrow é o número de linhas a serem criadas.

  • ncol é o número de colunas a serem criadas.

  • byrowé uma pista lógica. Se for TRUE, os elementos do vetor de entrada são organizados por linha.

  • dimname são os nomes atribuídos às linhas e colunas.

Exemplo

Crie uma matriz tendo um vetor de números como entrada.

# Elements are arranged sequentially by row.
M <- matrix(c(3:14), nrow = 4, byrow = TRUE)
print(M)

# Elements are arranged sequentially by column.
N <- matrix(c(3:14), nrow = 4, byrow = FALSE)
print(N)

# Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")

P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))
print(P)

Quando executamos o código acima, ele produz o seguinte resultado -

[,1] [,2] [,3]
[1,]    3    4    5
[2,]    6    7    8
[3,]    9   10   11
[4,]   12   13   14
     [,1] [,2] [,3]
[1,]    3    7   11
[2,]    4    8   12
[3,]    5    9   13
[4,]    6   10   14
     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14

Acessando Elementos de uma Matriz

Os elementos de uma matriz podem ser acessados ​​usando o índice de coluna e linha do elemento. Consideramos a matriz P acima para encontrar os elementos específicos abaixo.

# Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")

# Create the matrix.
P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))

# Access the element at 3rd column and 1st row.
print(P[1,3])

# Access the element at 2nd column and 4th row.
print(P[4,2])

# Access only the  2nd row.
print(P[2,])

# Access only the 3rd column.
print(P[,3])

Quando executamos o código acima, ele produz o seguinte resultado -

[1] 5
[1] 13
col1 col2 col3 
   6    7    8 
row1 row2 row3 row4 
   5    8   11   14

Computações Matrix

Várias operações matemáticas são realizadas nas matrizes usando os operadores R. O resultado da operação também é uma matriz.

As dimensões (número de linhas e colunas) devem ser as mesmas para as matrizes envolvidas na operação.

Adição e subtração de matriz

# Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print(matrix2)

# Add the matrices.
result <- matrix1 + matrix2
cat("Result of addition","\n")
print(result)

# Subtract the matrices
result <- matrix1 - matrix2
cat("Result of subtraction","\n")
print(result)

Quando executamos o código acima, ele produz o seguinte resultado -

[,1] [,2] [,3]
[1,]    3   -1    2
[2,]    9    4    6
     [,1] [,2] [,3]
[1,]    5    0    3
[2,]    2    9    4
Result of addition 
     [,1] [,2] [,3]
[1,]    8   -1    5
[2,]   11   13   10
Result of subtraction 
     [,1] [,2] [,3]
[1,]   -2   -1   -1
[2,]    7   -5    2

Multiplicação e divisão de matriz

# Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print(matrix2)

# Multiply the matrices.
result <- matrix1 * matrix2
cat("Result of multiplication","\n")
print(result)

# Divide the matrices
result <- matrix1 / matrix2
cat("Result of division","\n")
print(result)

Quando executamos o código acima, ele produz o seguinte resultado -

[,1] [,2] [,3]
[1,]    3   -1    2
[2,]    9    4    6
     [,1] [,2] [,3]
[1,]    5    0    3
[2,]    2    9    4
Result of multiplication 
     [,1] [,2] [,3]
[1,]   15    0    6
[2,]   18   36   24
Result of division 
     [,1]      [,2]      [,3]
[1,]  0.6      -Inf 0.6666667
[2,]  4.5 0.4444444 1.5000000