Reconocimiento de imágenes mediante TensorFlow

TensorFlow incluye una función especial de reconocimiento de imágenes y estas imágenes se almacenan en una carpeta específica. Con imágenes relativamente iguales, será fácil implementar esta lógica por motivos de seguridad.

La estructura de carpetas de la implementación del código de reconocimiento de imágenes es la que se muestra a continuación:

El dataset_image incluye las imágenes relacionadas, que deben cargarse. Nos centraremos en el reconocimiento de imágenes con nuestro logo definido en él. Las imágenes se cargan con el script "load_data.py", que ayuda a mantener una nota sobre varios módulos de reconocimiento de imágenes dentro de ellas.

import pickle
from sklearn.model_selection import train_test_split
from scipy import misc

import numpy as np
import os

label = os.listdir("dataset_image")
label = label[1:]
dataset = []

for image_label in label:
   images = os.listdir("dataset_image/"+image_label)
   
   for image in images:
      img = misc.imread("dataset_image/"+image_label+"/"+image)
      img = misc.imresize(img, (64, 64))
      dataset.append((img,image_label))
X = []
Y = []

for input,image_label in dataset:
   X.append(input)
   Y.append(label.index(image_label))

X = np.array(X)
Y = np.array(Y)

X_train,y_train, = X,Y

data_set = (X_train,y_train)

save_label = open("int_to_word_out.pickle","wb")
pickle.dump(label, save_label)
save_label.close()

El entrenamiento de imágenes ayuda a almacenar los patrones reconocibles dentro de la carpeta especificada.

import numpy
import matplotlib.pyplot as plt

from keras.layers import Dropout
from keras.layers import Flatten
from keras.constraints import maxnorm
from keras.optimizers import SGD
from keras.layers import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K

import load_data
from keras.models import Sequential
from keras.layers import Dense

import keras
K.set_image_dim_ordering('tf')

# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)

# load data
(X_train,y_train) = load_data.data_set

# normalize inputs from 0-255 to 0.0-1.0
X_train = X_train.astype('float32')

#X_test = X_test.astype('float32')
X_train = X_train / 255.0

#X_test = X_test / 255.0
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)

#y_test = np_utils.to_categorical(y_test)
num_classes = y_train.shape[1]

# Create the model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), padding = 'same', 
   activation = 'relu', kernel_constraint = maxnorm(3)))

model.add(Dropout(0.2))
model.add(Conv2D(32, (3, 3), activation = 'relu', padding = 'same', 
   kernel_constraint = maxnorm(3)))

model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Flatten())
model.add(Dense(512, activation = 'relu', kernel_constraint = maxnorm(3)))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation = 'softmax'))

# Compile model
epochs = 10
lrate = 0.01
decay = lrate/epochs
sgd = SGD(lr = lrate, momentum = 0.9, decay = decay, nesterov = False)
model.compile(loss = 'categorical_crossentropy', optimizer = sgd, metrics = ['accuracy'])
print(model.summary())

#callbacks = [keras.callbacks.EarlyStopping(
   monitor = 'val_loss', min_delta = 0, patience = 0, verbose = 0, mode = 'auto')]
callbacks = [keras.callbacks.TensorBoard(log_dir='./logs', 
   histogram_freq = 0, batch_size = 32, write_graph = True, write_grads = False, 
   write_images = True, embeddings_freq = 0, embeddings_layer_names = None, 
   embeddings_metadata = None)]

# Fit the model

model.fit(X_train, y_train, epochs = epochs, 
   batch_size = 32,shuffle = True,callbacks = callbacks)

# Final evaluation of the model
scores = model.evaluate(X_train, y_train, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))

# serialize model to JSONx
model_json = model.to_json()
with open("model_face.json", "w") as json_file:
   json_file.write(model_json)

# serialize weights to HDF5
model.save_weights("model_face.h5")
print("Saved model to disk")

La línea de código anterior genera una salida como se muestra a continuación: