Konvexe Optimierung - Inneres Produkt
Das innere Produkt ist eine Funktion, die einem Vektorpaar einen Skalar gibt.
Inneres Produkt - $ f: \ mathbb {R} ^ n \ times \ mathbb {R} ^ n \ rightarrow \ kappa $ wobei $ \ kappa $ ein Skalar ist.
Die grundlegenden Eigenschaften des inneren Produkts sind wie folgt:
Lassen Sie $ X \ in \ mathbb {R} ^ n $
$ \ left \ langle x, x \ right \ rangle \ geq 0, \ forall x \ in X $
$ \ left \ langle x, x \ right \ rangle = 0 \ Leftrightarrow x = 0, \ forall x \ in X $
$ \ left \ langle \ alpha x, y \ right \ rangle = \ alpha \ left \ langle x, y \ right \ rangle, \ forall \ alpha \ in \ kappa \: und \: \ forall x, y \ in X. $
$ \ left \ langle x + y, z \ right \ rangle = \ left \ langle x, z \ right \ rangle + \ left \ langle y, z \ right \ rangle, \ forall x, y, z \ in X $
$ \ left \ langle \ overline {y, x} \ right \ rangle = \ left (x, y \ right), \ forall x, y \ in X $
Note - -
Beziehung zwischen Norm und innerem Produkt: $ \ left \ | x \ right \ | = \ sqrt {\ left (x, x \ right)} $
$ \ forall x, y \ in \ mathbb {R} ^ n, \ left \ langle x, y \ right \ rangle = x_1y_1 + x_2y_2 + ... + x_ny_n $
Beispiele
1. Finden Sie das innere Produkt von $ x = \ left (1,2,1 \ right) \: und \: y = \ left (3, -1,3 \ right) $
Lösung
$ \ left \ langle x, y \ right \ rangle = x_1y_1 + x_2y_2 + x_3y_3 $
$ \ left \ langle x, y \ right \ rangle = \ left (1 \ times3 \ right) + \ left (2 \ times-1 \ right) + \ left (1 \ times3 \ right) $
$ \ left \ langle x, y \ right \ rangle = 3 + \ left (-2 \ right) + 3 $
$ \ left \ langle x, y \ right \ rangle = 4 $
2. Wenn $ x = \ left (4,9,1 \ right), y = \ left (-3,5,1 \ right) $ und $ z = \ left (2,4,1 \ right) $, finde $ \ left (x + y, z \ right) $
Lösung
Wie wir wissen, ist $ \ left \ langle x + y, z \ right \ rangle = \ left \ langle x, z \ right \ rangle + \ left \ langle y, z \ right \ rangle $
$ \ left \ langle x + y, z \ right \ rangle = \ left (x_1z_1 + x_2z_2 + x_3z_3 \ right) + \ left (y_1z_1 + y_2z_2 + y_3z_3 \ right) $
$ \ left \ langle x + y, z \ right \ rangle = \ left \ {\ left (4 \ times 2 \ right) + \ left (9 \ times 4 \ right) + \ left (1 \ times1 \ right) \ right \} + $
$ \ left \ {\ left (-3 \ times2 \ right) + \ left (5 \ times4 \ right) + \ left (1 \ times 1 \ right) \ right \} $
$ \ left \ langle x + y, z \ right \ rangle = \ left (8 + 36 + 1 \ right) + \ left (-6 + 20 + 1 \ right) $
$ \ left \ langle x + y, z \ right \ rangle = 45 + 15 $
$ \ left \ langle x + y, z \ right \ rangle = 60 $