適性-平均の例
Q1-20個の数字の平均はゼロです。それらのうち、多くても、ゼロより大きいものはいくつありますか?
A -19
B -10
C -0
D -1
Answer - A
Explanation
Average of 20 numbers = 0.
Therefore Sum of 20 numbers = (0 x 20) = 0
It is quite possible that 19 of these numbers may be positive and if their sum is a, then 20th number is (-a).
Q 2- 5で割り切れる6から34までのすべての数の平均を見つけますか?
A -30
B -24
C -20
D -18
Answer - C
Explanation
Average = (10 + 15 + 20 + 25 + 30)⁄5 = 100⁄5 = 20.
Q 3-最初の5の3の倍数の平均は?
A -15
B -12
C -3
D -9
Answer - D
Explanation
Average = 3(1 + 2 + 3 + 4 + 5)⁄5 = 45⁄5 = 9
Q 4-最初の9つの素数の平均は?
A -10
B - 11 1 / 9
C -9
D - 11 2 / 9
Answer - B
Explanation
Average = (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23)⁄9 = 100⁄9 = 111⁄9
Q 5-生徒は、3、11、7、9、15、13、8、19、17、21、14、およびzの数値の算術平均を見つけるように求められましたか?
A -3
B -7
C -17
D -31
Answer - B
Explanation
Clearly, we have (3 + 11 + 7 + 9 + 15 + 13 + 8 + 19 + 17 + 21 + 14 + z)⁄12 = 12
or 137 + z = 144
or z = 144 - 137 = 7.
Q 6-5つの観測値z、z + 2、z + 4、z +6およびz + 8の平均が11の場合、最後の3つの観測値の平均は?
A -11
B -13
C -15
D -17
Answer - B
Explanation
we have : (z + (z + 2) + (z + 4) + (z + 6) + (z + 8))⁄5 = 11 or 5z + 20 = 55 or z = 7.
So the numbers are 7, 9, 11, 13, 15.
therefore required mean = (11 + 13 + 15⁄3)
= 39⁄3 = 13.
Q 7-数字が入れ替わっても変わらない2桁の数字の平均は?
A -55
B -33
C -44
D -66
Answer - A
Explanation
Average = (11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99⁄9)
((11 + 99) + (22 + 88) + (33 + 77) + (44 + 66) +55⁄9)
(4 x 110 + 55⁄9)
(495⁄9) = 55
Q8-ゼロ以外の数とその平方の平均は数の5倍です。数は?
A -9
B -17
C -29
D -295
Answer - A
Explanation
Let the number be z. then,
z + z 2⁄2 = 5z
= z 2 - 9z = 0
z (z - 9) = 0
z = 0 or z = 9
so the number is 9.
Q 9-7つの連続した数の平均は20です。これらの数の最大のものは?
A -20
B -22
C -23
D -24
Answer - C
Explanation
Let the number be z, z + 1, z + 2, z + 3 ,z + 4, z + 5 ,z + 6. then, (z + (z + 1) + (z + 2) + (z + 3) + (z + 4) + (z + 5) + (z + 6))⁄7 = 20
7z + 21 = 140 or 7z = 119 or z = 17
Largest number = z + 6 = 17 + 6 = 23
Q 10-連続する5つの奇数の平均は61です。最高の数字と最低の数字の違いは何ですか?
A -9
B -8
C -10
D -11
Answer - B
Explanation
Let the number be z, z + 2, z + 4, z + 6 and z + 8. then, (z + (z + 2) + (z + 4) + (z + 6) + (z + 8))⁄5 = 61
5z + 20 = 305 or z = 57
so the required number is = (57 + 8) - 57 = 8
Q 11-3つの連続する奇数の合計は、これらの数値の平均より38多いです。これらの数字の最初のものは何ですか?
A -17
B -13
C -19
D-なし
Answer - A
Explanation
Let the number be z, z + 2, and z + 4. then, (z + z + 2 + z + 4) - (z + z + 2 + z + 4)⁄3 = 38
2(3z + 6) = 114 or 6z = 102 or z = 17.
Q 12-クラスの男子の平均年齢は16歳で、女子の平均年齢は15歳です。クラス全体の平均年齢は
A -15年
B -15。5年
C -16年
D-指定された情報では計算できません
Answer - D
Explanation
Clearly to find the average we ought to know the number of boys, girls or students in the class neither of which is given. So, data is inadequate.
Q 13-特定の農業労働者の平均年収(ルピー)はSであり、他の労働者の平均年収はTです。農業労働者の数は他の労働者の11倍です。それでは、すべての労働者の平均月収(ルピー)は?
A - S + T ⁄ 2
B - 11S + T ⁄ 12
C - 1 + ⁄ 11S T
D - S + 11T ⁄ 2
Answer - B
Explanation
Let the number of other workers be z.
then, number of agricultural workers = 11z
Total number of workers = 12z
Therefore Average monthly salary = S x 11z + T x z⁄12z = 11S + T⁄12
Q 14-家族は祖父母、両親、3人の孫で構成されています。祖父母の平均年齢は67歳、親の平均年齢は35歳、孫の平均年齢は6歳です。家族の平均年齢は何歳ですか?
A - 28 4 / 7
B - 31 5 / 7
C - 32 1 / 7
D-なし
Answer - B
Explanation
Required average = (67 x 2 + 35 x 2 + 6 x 3⁄2 + 2 + 3) = (134 + 70 + 18⁄7)
= 222⁄7 = 315⁄7
Q 15-図書館の訪問者は、日曜日に平均510人、その他の日に240人です。日曜日から始まる30日間の1日あたりの平均訪問者数は?
A -276
B -280
C -285
D -250
Answer - C
Explanation
Since the month begins with a sunday, so there will be five sundays in the month
Therefore Required average = (510 x 5 + 240 x 25⁄30)
= 8550⁄30 = 285
Q 16-55、60、45人の生徒の3つのバッチの平均点がそれぞれ50、55、60の場合、すべての生徒の平均点は?
A -53.33
B -54.68
C -55
D-なし
Answer - B
Explanation
Required average = (55 x 50 + 60 x 55 + 45 x 60⁄55 + 60 + 45)
(2750 + 3300 + 2700⁄160) = (8750⁄160) = 54.68
Q 17 -クラス16人の少年の平均重量は50.25キログラムであり、残りの8人の少年のそれは45.15キログラムです。クラスのすべての男の子の平均体重を見つけますか?
A -48.55
B -49.25
C -45
D -47
Answer - A
Explanation
Required average = (50.25 x 16 + 45.15 x 8⁄16 + 8)
(804 + 361.20⁄24) = (1165.20⁄24) = 48.55
Q 18 - A車の所有者の買物はルピーでガソリン。7.50、ルピー 8とRs。3年連続で1リットルあたり8.50。彼がルピーを費やした場合、ガソリン1リットルあたりの平均コストはいくらですか。毎年4000?
A -7.98
B -8
C -8.50
D -9
Answer - A
Explanation
Total quantity of petrol consumed in 3 years. = (4000⁄7.50 + 4000⁄8 + 4000⁄8.50) litres
= 4000 2⁄15 + 1⁄8 2⁄17 = 76700⁄51 litres
Total amount spent = Rs. (3 x 4000) = Rs 12000
Therefore Average cost = Rs. (12000 x 51⁄76700) = Rs. 6120⁄767
= Rs. 7.98.
Q 19-6つの数値の平均はzであり、これらの3つの平均はyです。残りの3つの平均がwの場合、?
A -2z = 2y + 2w
B -z = 2y + 2w
C -z = y + w
D -2z = y + w
Answer - D
Explanation
Clearly, we have: z = 3y + 3w⁄6
or 2z = y + w.
Q 20-9人のうち、8人がRsを費やしました。食事ごとに30個。9番目はRsを使いました。9つすべての平均支出より20多い。彼ら全員が費やした合計金額は?
A -290
B -260
C -292.50
D -400.50
Answer - C
Explanation
Let the average expenditure be Rs z then,
9z = 8 x 30 + (z + 20) or 9z = z + 260 or 8z = 260 or z = 32.50.
Therefore total money spent = 9z = Rs. (9 x 32.50) = Rs. 292.50.