Optymalizacja wypukła - funkcja różniczkowalna
Niech S będzie niepustym zbiorem otwartym w $ \ mathbb {R} ^ n $, a następnie $ f: S \ rightarrow \ mathbb {R} $ mówi się, że jest różniczkowalny w $ \ hat {x} \ w S $ jeśli istnieje wektor $ \ bigtriangledown f \ left (\ hat {x} \ right) $ nazywany wektorem gradientowym i funkcja $ \ alpha: \ mathbb {R} ^ n \ rightarrow \ mathbb {R} $ taka, że
$ f \ left (x \ right) = f \ left (\ hat {x} \ right) + \ bigtriangledown f \ left (\ hat {x} \ right) ^ T \ left (x- \ hat {x} \ po prawej) + \ lewo \ | x = \ kapelusz {x} \ right \ | \ alpha \ left (\ hat {x}, x- \ hat {x} \ right), \ forall x \ in S $ gdzie
$ \ alpha \ left (\ hat {x}, x- \ hat {x} \ right) \ rightarrow 0 \ bigtriangledown f \ left (\ hat {x} \ right) = \ left [\ frac {\ part f} {\ częściowe x_1} \ frac {\ częściowe f} {\ częściowe x_2} ... \ frac {\ częściowe f} {\ częściowe x_n} \ right] _ {x = \ hat {x}} ^ {T} $
Twierdzenie
niech S będzie niepustym, otwartym wypukłym zestawem w $ \ mathbb {R} ^ n $ i niech $ f: S \ rightarrow \ mathbb {R} $ będzie różniczkowalne na S. Wówczas f jest wypukłe wtedy i tylko wtedy, gdy dla $ x_1, x_2 \ in S, \ bigtriangledown f \ left (x_2 \ right) ^ T \ left (x_1-x_2 \ right) \ leq f \ left (x_1 \ right) -f \ left (x_2 \ right) $
Dowód
Niech f będzie funkcją wypukłą. czyli dla $ x_1, x_2 \ in S, \ lambda \ in \ left (0, 1 \ right) $
$ f \ left [\ lambda x_1 + \ left (1- \ lambda \ right) x_2 \ right] \ leq \ lambda f \ left (x_1 \ right) + \ left (1- \ lambda \ right) f \ left (x_2 \ right) $
$ \ Rightarrow f \ left [\ lambda x_1 + \ left (1- \ lambda \ right) x_2 \ right] \ leq \ lambda \ left (f \ left (x_1 \ right) -f \ left (x_2 \ right) \ right ) + f \ left (x_2 \ right) $
$ \ Rightarrow \ lambda \ left (f \ left (x_1 \ right) -f \ left (x_2 \ right) \ right) \ geq f \ left (x_2 + \ lambda \ left (x_1-x_2 \ right) \ right) - f \ left (x_2 \ right) $
$ \ Rightarrow \ lambda \ left (f \ left (x_1 \ right) -f \ left (x_2 \ right) \ right) \ geq f \ left (x_2 \ right) + \ bigtriangledown f \ left (x_2 \ right) ^ T \ left (x_1-x_2 \ right) \ lambda + $
$ \ left \ | \ lambda \ left (x_1-x_2 \ right) \ right \ | \ alpha \ left (x_2, \ lambda \ left (x_1 - x_2 \ right) -f \ left (x_2 \ right) \ right) $
gdzie $ \ alpha \ left (x_2, \ lambda \ left (x_1 - x_2 \ right) \ right) \ rightarrow 0 $ as $ \ lambda \ rightarrow 0 $
Dzieląc przez $ \ lambda $ z obu stron, otrzymujemy -
$ f \ left (x_1 \ right) -f \ left (x_2 \ right) \ geq \ bigtriangledown f \ left (x_2 \ right) ^ T \ left (x_1-x_2 \ right) $
Rozmawiać
Niech dla $ x_1, x_2 \ in S, \ bigtriangledown f \ left (x_2 \ right) ^ T \ left (x_1-x_2 \ right) \ leq f \ left (x_1 \ right) -f \ left (x_2 \ right) $
Aby pokazać, że f jest wypukłe.
Ponieważ S jest wypukłe, $ x_3 = \ lambda x_1 + \ left (1- \ lambda \ right) x_2 \ in S, \ lambda \ in \ left (0, 1 \ right) $
Zatem od $ x_1, x_3 \ in S $
$ f \ left (x_1 \ right) -f \ left (x_3 \ right) \ geq \ bigtriangledown f \ left (x_3 \ right) ^ T \ left (x_1 -x_3 \ right) $
$ \ Rightarrow f \ left (x_1 \ right) -f \ left (x_3 \ right) \ geq \ bigtriangledown f \ left (x_3 \ right) ^ T \ left (x_1 - \ lambda x_1- \ left (1- \ lambda \ right) x_2 \ right) $
$ \ Rightarrow f \ left (x_1 \ right) -f \ left (x_3 \ right) \ geq \ left (1- \ lambda \ right) \ bigtriangledown f \ left (x_3 \ right) ^ T \ left (x_1 - x_2 \ right) $
Ponieważ $ x_2, x_3 \ in S $, a zatem
$ f \ left (x_2 \ right) -f \ left (x_3 \ right) \ geq \ bigtriangledown f \ left (x_3 \ right) ^ T \ left (x_2-x_3 \ right) $
$ \ Rightarrow f \ left (x_2 \ right) -f \ left (x_3 \ right) \ geq \ bigtriangledown f \ left (x_3 \ right) ^ T \ left (x_2- \ lambda x_1- \ left (1- \ lambda \ right) x_2 \ right) $
$ \ Rightarrow f \ left (x_2 \ right) -f \ left (x_3 \ right) \ geq \ left (- \ lambda \ right) \ bigtriangledown f \ left (x_3 \ right) ^ T \ left (x_1-x_2 \ po prawej) $
W ten sposób łącząc powyższe równania otrzymujemy -
$ \ lambda \ left (f \ left (x_1 \ right) -f \ left (x_3 \ right) \ right) + \ left (1- \ lambda \ right) \ left (f \ left (x_2 \ right) -f \ left (x_3 \ right) \ right) \ geq 0 $
$ \ Rightarrow f \ left (x_3 \ right) \ leq \ lambda f \ left (x_1 \ right) + \ left (1- \ lambda \ right) f \ left (x_2 \ right) $
Twierdzenie
niech S będzie niepustym, otwartym wypukłym zbiorem w $ \ mathbb {R} ^ n $ i niech $ f: S \ rightarrow \ mathbb {R} $ będzie różniczkowalne na S, wtedy f jest wypukłe na S wtedy i tylko wtedy, gdy dla dowolne $ x_1, x_2 \ in S, \ left (\ bigtriangledown f \ left (x_2 \ right) - \ bigtriangledown f \ left (x_1 \ right) \ right) ^ T \ left (x_2-x_1 \ right) \ geq 0 $
Dowód
niech f będzie funkcją wypukłą, a następnie używając poprzedniego twierdzenia -
$ \ bigtriangledown f \ left (x_2 \ right) ^ T \ left (x_1-x_2 \ right) \ leq f \ left (x_1 \ right) -f \ left (x_2 \ right) $ i
$ \ bigtriangledown f \ left (x_1 \ right) ^ T \ left (x_2-x_1 \ right) \ leq f \ left (x_2 \ right) -f \ left (x_1 \ right) $
Dodając powyższe dwa równania, otrzymujemy -
$ \ bigtriangledown f \ left (x_2 \ right) ^ T \ left (x_1-x_2 \ right) + \ bigtriangledown f \ left (x_1 \ right) ^ T \ left (x_2-x_1 \ right) \ leq 0 $
$ \ Rightarrow \ left (\ bigtriangledown f \ left (x_2 \ right) - \ bigtriangledown f \ left (x_1 \ right) \ right) ^ T \ left (x_1-x_2 \ right) \ leq 0 $
$ \ Rightarrow \ left (\ bigtriangledown f \ left (x_2 \ right) - \ bigtriangledown f \ left (x_1 \ right) \ right) ^ T \ left (x_2-x_1 \ right) \ geq 0 $
Rozmawiać
Niech dla każdego $ x_1, x_2 \ in S, \ left (\ bigtriangledown f \ left (x_2 \ right) - \ bigtriangledown f \ left (x_1 \ right) \ right) ^ T \ left (x_2-x_1 \ right) \ geq 0 $
Aby pokazać, że f jest wypukłe.
Niech $ x_1, x_2 \ in S $, a więc przez twierdzenie o wartości średniej, $ \ frac {f \ left (x_1 \ right) -f \ left (x_2 \ right)} {x_1-x_2} = \ bigtriangledown f \ left ( x \ right), x \ in \ left (x_1-x_2 \ right) \ Rightarrow x = \ lambda x_1 + \ left (1- \ lambda \ right) x_2 $, ponieważ S jest zbiorem wypukłym.
$ \ Rightarrow f \ left (x_1 \ right) - f \ left (x_2 \ right) = \ left (\ bigtriangledown f \ left (x \ right) ^ T \ right) \ left (x_1-x_2 \ right) $
dla $ x, x_1 $, wiemy -
$ \ left (\ bigtriangledown f \ left (x \ right) - \ bigtriangledown f \ left (x_1 \ right) \ right) ^ T \ left (x-x_1 \ right) \ geq 0 $
$ \ Rightarrow \ left (\ bigtriangledown f \ left (x \ right) - \ bigtriangledown f \ left (x_1 \ right) \ right) ^ T \ left (\ lambda x_1 + \ left (1- \ lambda \ right) x_2- x_1 \ right) \ geq 0 $
$ \ Rightarrow \ left (\ bigtriangledown f \ left (x \ right) - \ bigtriangledown f \ left (x_1 \ right) \ right) ^ T \ left (1- \ lambda \ right) \ left (x_2-x_1 \ right) ) \ geq 0 $
$ \ Rightarrow \ bigtriangledown f \ left (x \ right) ^ T \ left (x_2-x_1 \ right) \ geq \ bigtriangledown f \ left (x_1 \ right) ^ T \ left (x_2-x_1 \ right) $
Łącząc powyższe równania, otrzymujemy -
$ \ Rightarrow \ bigtriangledown f \ left (x_1 \ right) ^ T \ left (x_2-x_1 \ right) \ leq f \ left (x_2 \ right) -f \ left (x_1 \ right) $
Stąd używając ostatniego twierdzenia, f jest funkcją wypukłą.
Funkcja dwukrotnie różniczkowalna
Niech S będzie niepustym podzbiorem $ \ mathbb {R} ^ n $ i niech $ f: S \ rightarrow \ mathbb {R} $, a następnie f jest dwukrotnie różniczkowalne przy $ \ bar {x} \ in S $ jeśli istnieje wektor $ \ bigtriangledown f \ left (\ bar {x} \ right), a \: nXn $ matrix $ H \ left (x \ right) $ (zwany macierzą Hesji) i funkcja $ \ alpha: \ mathbb {R} ^ n \ rightarrow \ mathbb {R} $ takie, że $ f \ left (x \ right) = f \ left (\ bar {x} + x- \ bar {x} \ right) = f \ left (\ bar {x} \ right) + \ bigtriangledown f \ left (\ bar {x} \ right) ^ T \ left (x- \ bar {x} \ right) + \ frac {1} {2} \ left (x- \ bar {x} \ right) H \ left (\ bar {x} \ right) \ left (x- \ bar {x} \ right) $
gdzie $ \ alpha \ left (\ bar {x}, x- \ bar {x} \ right) \ rightarrow Oasx \ rightarrow \ bar {x} $