ทฤษฎีเครือข่าย - การวิเคราะห์ตาข่าย
ในการวิเคราะห์ตาข่ายเราจะพิจารณากระแสที่ไหลผ่านแต่ละตาข่าย ดังนั้นการวิเคราะห์ตาข่ายจึงเรียกอีกอย่างว่าMesh-current method.
ก branchเป็นเส้นทางที่รวมสองโหนดและมีองค์ประกอบวงจร หากกิ่งไม้เป็นของตาข่ายเพียงเส้นเดียวกระแสของกิ่งจะเท่ากับกระแสตาข่าย
หากกิ่งไม้เป็นแบบเดียวกันกับสองตาข่ายกระแสของกิ่งจะเท่ากับผลรวม (หรือผลต่าง) ของกระแสตาข่ายสองเส้นเมื่ออยู่ในทิศทางเดียวกัน (หรือตรงกันข้าม)
ขั้นตอนของการวิเคราะห์ตาข่าย
ทำตามขั้นตอนเหล่านี้ในขณะที่แก้ปัญหาเครือข่ายไฟฟ้าหรือวงจรโดยใช้การวิเคราะห์ตาข่าย
Step 1 - ระบุไฟล์ meshes และติดป้ายกระแสตาข่ายในทิศทางตามเข็มนาฬิกาหรือทวนเข็มนาฬิกา
Step 2 - สังเกตปริมาณของกระแสที่ไหลผ่านแต่ละองค์ประกอบในรูปของกระแสตาข่าย
Step 3 - เขียน mesh equationsกับตาข่ายทั้งหมด สมการตาข่ายได้มาจากการใช้ KVL ก่อนแล้วตามด้วยกฎของโอห์ม
Step 4 - แก้สมการตาข่ายที่ได้รับในขั้นตอนที่ 3 เพื่อรับไฟล์ mesh currents.
ตอนนี้เราสามารถค้นหากระแสที่ไหลผ่านองค์ประกอบใด ๆ และแรงดันไฟฟ้าผ่านองค์ประกอบใด ๆ ที่มีอยู่ในเครือข่ายที่กำหนดโดยใช้กระแสตาข่าย
ตัวอย่าง
ค้นหาแรงดันไฟฟ้าข้ามตัวต้านทาน 30 Ωโดยใช้ Mesh analysis.

Step 1- มีสองตาข่ายในวงจรด้านบน mesh currentsI 1และ I 2ถือเป็นทิศทางตามเข็มนาฬิกา กระแสตาข่ายเหล่านี้แสดงในรูปต่อไปนี้

Step 2- กระแสตาข่าย I 1ไหลผ่านแหล่งจ่ายแรงดัน 20 V และตัวต้านทาน 5 Ω ในทำนองเดียวกันกระแสตาข่าย I 2ไหลผ่านตัวต้านทาน 30 Ωและแหล่งแรงดันไฟฟ้า -80 V แต่ความแตกต่างของกระแสตาข่ายสองเส้นคือ I 1และ I 2ไหลผ่านตัวต้านทาน 10 Ωเนื่องจากเป็นกิ่งก้านทั่วไปของตาข่ายสองเส้น
Step 3 - ในกรณีนี้เราจะได้รับ two mesh equationsเนื่องจากมีสองตาข่ายในวงจรที่กำหนด เมื่อเราเขียนสมการตาข่ายสมมติว่ากระแสตาข่ายของตาข่ายนั้นมากกว่ากระแสตาข่ายอื่น ๆ ทั้งหมดของวงจร
mesh equation ของตาข่ายแรกคือ
หารสมการข้างบนด้วย 5
คูณสมการข้างบนด้วย 2
mesh equation ของตาข่ายที่สองคือ
หารสมการข้างบนด้วย 10
Step 4- การหากระแสตาข่ายI 1และI 2โดยการแก้สมการ 1 และสมการ 2
เงื่อนไขด้านซ้ายมือของสมการ 1 และสมการ 2 จะเหมือนกัน จึงถือเอาข้อตกลงทางด้านขวามือของสมการที่ 1 และ 2 สมการเพื่อหาค่าของฉัน 1
แทนค่าI 1ในสมการ 2
เราจึงได้กระแสตาข่ายI 1และI 2เป็น
Step 5- กระแสที่ไหลผ่านตัวต้านทาน 30 Ωไม่ใช่อะไรนอกจากกระแสตาข่ายI 2และเท่ากับ
แทนค่าของI 2และRในสมการด้านบน
ดังนั้นแรงดันไฟฟ้าข้ามตัวต้านทาน 30 Ωของวงจรที่กำหนดคือ 84 V.
Note 1- จากตัวอย่างข้างต้นเราสามารถสรุปได้ว่าเราต้องแก้สมการเมช 'm' ถ้าวงจรไฟฟ้ามีตาข่าย 'm' นั่นเป็นเหตุผลที่เราสามารถเลือกการวิเคราะห์ตาข่ายเมื่อจำนวนตาข่ายน้อยกว่าจำนวนโหนดหลัก (ยกเว้นโหนดอ้างอิง) ของวงจรไฟฟ้าใด ๆ
Note 2 - เราสามารถเลือกการวิเคราะห์โหนดหรือการวิเคราะห์แบบเมชเมื่อจำนวนตาข่ายเท่ากับจำนวนโหนดหลัก (ยกเว้นโหนดอ้างอิง) ในวงจรไฟฟ้าใด ๆ