Razones - Ejemplos resueltos
P 1 - En la remota posibilidad de que a: b = 2: 3 y b: c = 5: 7, descubra a: c.
A - 10:11
B - 10:21
C - 21:10
D - 11:10
Answer - B
Explanation
We have a/b = 2/3 and b/c = 5/7
So a/c = (a/b*b/c) = (2/3*5/7) = 10/21
So its demonstrate that a:c = 10:21
Q 2 - En la remota posibilidad de que a: b = 2: 3 y b: c = 5: 7, descubra a: b: c.
A - 10:15:21
B - 10:21:15
C - 15:10:21
D - 11:10:21
Answer - A
Explanation
Here a/b = 2/3 and b/c = 5:7 = 3/5*5:3/5*7 = 3:21/5.
So a:b=2:3 and b:c=3:21/5
So a:b:c = 2:3:21/5 = 10:15:21.
Q 3 - En la remota posibilidad de que 4a = 5b y 8b = 9c, encuentre a: b: c.
A - 45:36:32
B - 45:32:36
C - 32:45:36
D - 32:36:45
Answer - A
Explanation
4a = 5b
=> a/b=5/4
and 8b = 9c
=> b/c=9/8
So a:b = 5:4 and b:c = 9:8 = (4/9)(9):(4/9)(8) = 4:32/9
=> a:b:c = 5:4:32/9 = 45:36:32.
Hence,a:b:c = 45:36:32.
Q 4 - En la remota posibilidad de que a / 8 = b / 9 = c / 12, encuentre a: b: c.
A - 8: 12: 9
B - 8: 9: 12
C - 12: 8: 12
D - 9: 8: 12
Answer - B
Explanation
Let a/8 = b/9 =c/12 =k.
Then a=8k ,b=9k and c=12k.
So a:b:c = 8k:9k:12k =8:9:12.
Hence,a:b:c = 8:9:12.
Q 5 - En el caso de que a: b = 1: 3, b: c = 5: 7 y c: d = 9: 8, encuentre a: b: c: d.
A - 45: 15: 63: 56
B - 63: 45: 15: 56
C - 15: 45: 63: 56
D - 15: 63: 45: 56
Answer - C
Explanation
We have a:b = 1:3, b:c = 5:7 and c:d = 9:8
=> a:b = 5:15, b:c = 15:21, c:d =(21/9)*9 : (21/9)*8
=> a:b = 5:15, b:c = 15:21, c:d = 21:56/3
=> a:b:c:d =5:15:21:56/3 = 15:45:63:56
Consequently, a:b:c:d = 15:45:63:56
P 6 - En el caso de que (5x + 3y): (5x-3y) = 3: 1, entonces x: y =?
A - 6: 5
B - 7: 8
C - 8: 9
D - 9:11
Answer - A
Explanation
Here (5x+3y)/(5x-3y) = 3/1
=> 5x+3y = 15x-9y
=> 10x = 12y
=> x/y = 12/10 = 6/5
So x:y =6:5
P 7 - En el caso de que x: y = 5: 3, entonces (8x-5y): (8x + 5y) =?
A - 6:11
B - 7:11
C - 8:11
D - 5:11
Answer - D
Explanation
Given x/y = 5/3
Dividing numerator and denominator by y.
(8x-5y)/(8x+5y) = {8(x/y) - 5}/{8(x/y) + 5}
= {8*(5/3)-5}/{8*(5/3)+5}
= (40-15)/(40+15)
= 25/55
= 5/11
So (8x-5y):(8x+5y)= 5:11
Q 8 - ubique el cuarto correspondiente a 4,5 y 12.
A - 18
B - 16
C - 14
D - 15
Answer - D
Explanation
Let 4:5::12:x.
=> 4*x = (5*12)
=> x = 5*12/4
= 15
So the fourth relative to 4,5,12 is 15.
Q 9 - ubica el tercer proporcional correspondiente a 9 y 12.
A - 18
B - 16
C - 14
D - 15
Answer - B
Explanation
Third relative to 9 and 12 is equivalent to fourth corresponding to 9,12 and 12.
Give it a chance to be x at that point
=> 9:12::12:x
=> 9x = 12*12
=> x = 12*12/9
=16
So the third relative is 16.
P 10 - Ubique el relativo medio en algún lugar entre 49 y 64.
A - 58
B - 56
C - 54
D - 55
Answer - B
Explanation
Mean relative somewhere around 49 and 64 is 49*64 = (7*8) = 56.
Q 11 - Un agregado de rs. 391 se ha dividido entre a, b, c en la proporción 1/2: 2/3: 3/4, descubre la oferta de cada uno.
A - 102,136,153
B - 112,114,123
C - 114,117,129
D - 122,134,123
Answer - A
Explanation
We have a:b:c=1/2:2/3:3/4= 6:8:9.
A share = (391*6/23) = 102 rs.
B offer = (391*8/23) = 136 rs.
C offer = (391*9/23) = 153 rs.
Q 12 - Un saco contiene una rupia, cincuenta paisa y 25 paisa en la proporción de 8: 9: 11, si el efectivo total del paquete es 122, descubra el no. de monedas de todo tipo.
A - 8,64,72,88
B - 16,32,72,88
C - 8,64,128,88
D - 32,64,128,88
Answer - A
Explanation
Let the quantity of one rupee, 50-p and 25-p coins be 8x, 9x and 11x individually.
At that point, 8x + 9x/2 + 11x/4 =122
=> 32x + 18x + 11x = 488
=> 61x =488
=> x = 8
No. of one rupee coins = 8*8= 64
No. of 50-p coins =9*8= 72
No. of 25-p coins =11*8 =88
Q 13 - Una mezcla contiene licor y agua en la proporción 4: 3, si se agregan 7 litros de agua a la mezcla, la proporción de licor y agua llega a ser 3: 4. Descubra la cantidad de licor en la mezcla.
A - 12 litros
B - 13 litros
C - 14 litros
D - 15 litros
Answer - B
Explanation
Let the amount of liquor and water be 4x liter and 3x liter separately.
At that point , 4x/3x + 7 = 3/4
=> 16x = 9x+21
=> 7x = 21
so estimation of x is 3
Amount of liquor in the blend is = 4*3 =12 liters.
Q 14 - En una colección, el no. de suplente considerando expresiones, comercio y ciencia en la proporción de 4: 7: 9. En la remota posibilidad de que el no. de suplentes en expresiones de la experiencia humana, empresarial y científica se amplíe en un 30%, 20% y 40%. ¿Cuál será la nueva proporción?
A - 26:42:63
B - 36:42:63
C - 46:42:63
D - 56:42:63
Answer - A
Explanation
Let the no. of understudy in expressions, business and science be 4x,7x and 9x individually.
Presently they are 130% of 4x, 120 % of 7x and 140 % of 9x.
Required proportion = (130/100*4x): (120/100*7x) (140/100*9x)
=26x/5:42x/5:63x/5
=26:42:63.
Q 15 - El gasto de ensamblar un automóvil se compone de tres elementos: costo de material, trabajo y gastos generales. En un año, el gasto de estas cosas estaba en la proporción 4: 3: 2. El año siguiente, el gasto de material aumentó en un 10%, el costo de trabajo aumentó en un 8%, sin embargo, los gastos generales disminuyeron en un 5%. cada centavo del costo del auto.
A - 44/9%
B - 54/9%
C - 64/9%
D - 74/9%
Answer - A
Explanation
Let the expense of material, work and over head be rs. 4x, 3x and 2x separately.
At that point aggregate expense =9x rs .
New cost= {(110% of 4x) + (108% of 3x) +(90% of 2x)}
={(110/100*4x)+(108/100*3x)+(90/100*2x)}
= (22x/5 + 81x/25 + 9x/5)
= (110x+81x+45x)/25= 236x/25
Increment = {(236x/25)-9x} = 11x/25
Increase%= (11x/25)*(1/9x)*100 %
= 44/9 %
Q 16 - La proporción de no. de hombres jóvenes a la de mujeres jóvenes en una escuela es 3: 2. Si el 20% de los hombres jóvenes y el 25% de las mujeres jóvenes son becarios, descubra el% de individuos que no lo son
A - 64%
B - 78%
C - 84%
D - 76%
Answer - B
Explanation
Let the no. of young men be 3x and the no. of young ladies 2x.
Aggregate no. = 5x
No. of the individuals who are not grant holders
= (80% of 3x)+(75% of 2x)
= (80/100 * 3x) + ( 75/100 * 2x)
= (12x/5 + 3x/2)
= 39x/10
Required % = (39x/10)*(1/5x)*100 %
= 78%
P 17 - An y B juntos tienen rs.1210 con ellos. En el caso de que 4/15 de la suma A sea equivalente a 2/5 de la suma B, ¿qué cantidad de suma tiene B?
A - 484
B - 284
C - 384
D - 584
Answer - A
Explanation
Let (4/15)a = (2/5)b = x
then a = 15x/4 and b = 5x/2
So. 15x/4 + 5x/2 =1210
=> 15x + 10x = 4840
=> 25x = 4840
=> x=193.6
So. B = (5/2*193.6) = 484
Henceforth B has Rs. 484.
P 18 - En el caso de que (x + y): (xy) = 4: 1, entonces (x 2 + y 2 ): (x 2 -y 2 ) =?
A - 17/8
B - 19/8
C - 15/8
D - 13/8
Answer - A
Explanation
(x + y)/(x - y)= 4/1
=> x + y = 4x-4y
=> 3x = 5y
=> x/y = 5/3
Now (x2+y2)/ (x2-y2)= {(x/y)2+1}/ { (x/y )2-1 }
= {(5/3)2+1} / {(5/2)2 -1}
= 34/16 = 17/8
P 19 - En el caso de que (4x 2 -3y 2 ) :( 2x 2 + 5y 2 ) = 12:19, entonces x: y =?
A - 2: 1
B - 3: 2
C - 4: 1
D - 5: 2
Answer - B
Explanation
(4x2 -3y2)/ (2x2 +5y2) = 12/19
=>76x2-57y2 = 24x2+60y2
=> 52x2 = 117y2
=> x2/y2 = 117/52 = 9/4
=> (x/y)2=(3/2)2
=> x/y = 3/2.
=> x:y = 3:2
Q 20 - si x 2 + y 2 = 4xy, entonces x: y =?
A - 2: 1
B - 3: 2
C - 4: 1
D - 5: 2
Answer - A
Explanation
As x2+4y2 = 4xy
=> x2 + 4y2 - 4xy = 0
=> (x-2y)2 = 0
=> x-2y=0
=> x = 2y
=> x/y = 2/1.
=> x:y = 2:1.