Wie zeichne ich eine konforme Abbildung von der Z-Ebene zur W-Ebene?
Ich bin totaler Anfänger in Mathematica. Ich weiß nichts. Ich muss einige Diagramme zeichnen, um die Konformität der Karte zu zeigen$w=e^z$.
Ich muss einige Konturen zeichnen $z$-Flugzeug; zB horizontale Linie, vertikale Linie, 45-Grad-Linie und Einheitskreis. Dann muss ich die abgebildeten Kurven in erhalten$w$-Ebene wo $u$ und $v$ sind Funktionen von $x$ und $y$.
Ich habe keine Ahnung, wie das geht? Bitte hilf mir.
Antworten
6 cvgmt
Auf den Kommentar antworten.
Verwenden Sie MeshShading
diese Option , um die Region zu füllen.
expr1 = {x, y};
expr2 = With[{z = x + I*y}, E^z // ReIm // ComplexExpand];
ParametricPlot[#, {x, -4, 4}, {y, -4, 4},
MeshFunctions -> {#3 &, #4 &, #4 - #3 &, Sqrt[#3^2 + #4^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshShading -> {{{{Red, None}, {None, None}}, {{Red, None}, {None,
None}}}, {{{None, None}, {None, None}}, {{None,
None}, {None, None}}}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, Axes -> False, PlotRange -> 4,
BoundaryStyle -> None,
LabelStyle -> {FontFamily -> "Times", Blue}, PlotPoints -> 80,
PlotStyle -> None] & /@ {expr1, expr2} // GraphicsRow
Vereinfachen
expr1 = {x, y};
expr2 = With[{z = x + I*y}, E^z // ReIm // ComplexExpand];
ParametricPlot[#, {x, -4, 4}, {y, -4, 4},
MeshFunctions -> {#3 &, #4 &, #4 - #3 &, Sqrt[#3^2 + #4^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, Axes -> False, PlotRange -> 4,
BoundaryStyle -> None,
LabelStyle -> {FontFamily -> "Times", Blue}, PlotPoints -> 80,
PlotStyle -> None] & /@ {expr1, expr2} // GraphicsRow
Original
expr = With[{z = x + I*y}, E^z // ReIm // ComplexExpand]
xy = ParametricPlot[{x, y}, {x, -2, 2}, {y, -2, 2},
MeshFunctions -> {#1 &, #2 &, #2 - #1 &, Sqrt[#1^2 + #2^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, PlotPoints -> 50, FrameLabel -> {x, y},
PlotStyle -> None];
uv = ParametricPlot[expr, {x, -4, 4}, {y, -4, 4},
MeshFunctions -> {#3 &, #4 &, #4 - #3 &, Sqrt[#3^2 + #4^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, Axes -> False, PlotRange -> 8,
BoundaryStyle -> None, FrameLabel -> {u, v},
LabelStyle -> {FontFamily -> "Times", Blue}, PlotPoints -> 80,
PlotStyle -> None];
GraphicsRow[{xy, uv}]