Python - интеграция функции и построение графика

Nov 24 2020

Я пытаюсь численно решить уравнение пучка Бернулли и нанести на график результаты. Первая производная уравнения - это наклон, а вторая производная - прогиб. Я подошел к проблеме поэтапно: сначала построил функцию, а затем интегрировал ее и построил результаты интеграции на той же диаграмме.

Мой код пока что ниже. Я подозреваю, что проблема заключается в том, что Integration.quad возвращает одно значение, и я пытаюсь получить из него несколько значений. Кто-нибудь знает, как к этому подойти?

from scipy import integrate
import numpy as np

from pylab import *

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

def d2y_dx2(x):
    return (-F*x)/(E*I)

a = 0.0
b = L

res, err = integrate.quad(d2y_dx2, a, b)

t = np.linspace(a,b,100)

ax = subplot(111)
ax.plot(t, d2y_dx2(t))
ax.plot(t, res(t))

show()

РЕДАКТИРОВАТЬ: Bellow - это модифицированный код с ответом willcrack. Теперь этот код работает, но результаты неверны. Внизу я добавил код для построения результатов с использованием правильных аналитических решений уравнения пучка.

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

# Integration parameters
a = 0.0
b = L

# Define the beam equation
def d2y_dx2(x,y=None):
    return (-F*x)/(E*I)


def something(x):
    return integrate.quad(d2y_dx2)[0]
    
# Define the integration1 - slope
def slope(t):
    slope_res = []
    for x in t:
        res1, err = integrate.quad(d2y_dx2, a, b)
        slope_res.append(res1)
    return slope_res

# Define the integration1 - deflection
def defl(t1):
    defl_res = []
    for t in t1:
        res2, err = integrate.dblquad(d2y_dx2,a,b, lambda x: a, lambda x: b)
        defl_res.append(res2)
    return defl_res

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

Аналитическое решение, код и результаты ниже. Форма отклоненного луча развернута, конец луча находится в точке x = 0.

from __future__ import division  #to enable normal floating division
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
w = 10  #beam cross sec width (mm)
h = 10  #beam cross sec height (mm)
I = (w*h**3)/12   #cross sec moment of inertia (mm^4)
I1 = (w*h**3)/12
E = 200000   #steel elast modul (N/mm^2)
L = 100  #beam length(mm)
F = 100   #force (N)

# Define equations
def d2y_dx2(x):
    return (-F*x)/(E*I)

def dy_dx(x):
    return (1/(E*I))*(-0.5*F*x**2 + 0.5*F*L**2)

def y(x):
    return (1/(E*I))*(-(1/6)*F*(x**3) + (1/2)*F*(L**2)*x - (1/3)*F*(L**3))

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)

a = 0
b = L
x = np.linspace(a,b,100)

ax1.plot(x, d2y_dx2(x))
ax2.plot(x, dy_dx(x))
ax3.plot(x, y(x))
plt.show()

Ответы

1 willcrack Nov 25 2020 at 12:02

Может ты можешь попробовать что-то вроде этого

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

# Integration parameters
a = 0.0
b = L

# Define the beam equation
def d2y_dx2(x,y=None):
    return (-F*x)/(E*I)


def something(x):
    return integrate.quad(d2y_dx2)[0]
    
# Define the integration1 - slope
def slope(t):
    slope_res = []
    for x in t:
        res1, err = integrate.quad(d2y_dx2, a, b)
        slope_res.append(res1)
    return slope_res

# Define the integration1 - deflection
def defl(t1):
    defl_res = []
    for t in t1:
        res2, err = integrate.dblquad(d2y_dx2,a,b, lambda x: a, lambda x: b)
        defl_res.append(res2)
    return defl_res

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

Результат:

1 willcrack Nov 25 2020 at 17:13

Думаю, я нашел решение для наклона. Другой попробую позже. Вот и обновление.

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100

# Integration parameters
a = 0.0
b = L

# Define the beam equation
def d2y_dx2(x,y=None):
    return (-F*x)/(E*I)

    
# Define the integration1 - slope
def slope(x):
    slope_res = np.zeros_like(x)
    for i,val in enumerate(x):
        y,err = integrate.quad(f,a,val)
        slope_res[i]=y
    return slope_res

# Define the integration1 - deflection
def defl(x):
    
    defl_res = np.zeros_like(x)
    for i,val in enumerate(x):
        y, err = integrate.dblquad(d2y_dx2,0,val, lambda x: 0, lambda x: val)
        defl_res[i]=y
    return defl_res

# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

Новый результат:

Все еще борюсь с последним ...