Стратегии решения $\int _0^{\frac{\pi }{2}}\frac{\ln (\sin \left(x\right))\ln (\cos \left(x\right))}{\tan \left(x\right)}\:\mathrm{d}x$.
Я могу решить этот интеграл определенным образом, но я хотел бы знать другие, более простые методы его атаки:
\begin{align*} \int _0^{\frac{\pi }{2}}\frac{\ln \left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)}{\tan \left(x\right)}\:\mathrm{d}x&\overset{ t=\sin\left(x\right)}=\int _0^{\frac{\pi }{2}}\frac{\ln \left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)}{\sin \left(x\right)}\cos \left(x\right)\:\mathrm{d}x\\[2mm] &=\int _0^1\frac{\ln \left(t\right)\ln \left(\cos \left(\arcsin \left(t\right)\right)\right)}{t}\cos \left(\arcsin \left(t\right)\right)\:\frac{1}{\sqrt{1-t^2}}\:\mathrm{d}t\\[2mm] &=\int _0^1\frac{\ln \left(t\right)\ln \left(\sqrt{1-t^2}\right)}{t}\sqrt{1-t^2}\:\frac{1}{\sqrt{1-t^2}}\:\mathrm{d}t\\[2mm] &=\frac{1}{2}\int _0^1\frac{\ln \left(t\right)\ln \left(1-t^2\right)}{t}\:\mathrm{d}t=-\frac{1}{2}\sum _{n=1}^{\infty }\frac{1}{n}\int _0^1t^{2n-1}\ln \left(t\right)\:\mathrm{d}t\\[2mm] &=\frac{1}{8}\sum _{n=1}^{\infty }\frac{1}{n^3}\\[2mm] \int _0^{\frac{\pi }{2}}\frac{\ln \left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)}{\tan \left(x\right)}\:\mathrm{d}x&=\frac{1}{8}\zeta (3) \end{align*}
Ответы
Позволять $$I=\int _0^{\frac{\pi }{2}}\frac{\ln (\sin \left(x\right))\ln (\cos \left(x\right))}{\tan \left(x\right)}\:\mathrm{d}x$$ Позволять $\ln \cos x=-t$, тогда у нас будет: $$I=-\frac{1}{2}\int_{0}^{\infty} t \ln(1-e^{-2t}) dt$$ Использовать $\ln(1-z)=-\sum_{k=1}^{\infty} \frac{z^k}{k} $ $$\implies I=\frac{1}{2}\sum_{k=1}^{\infty} \int_{0}^{\infty}\frac {t e^{-2kt}}{k} dt$$ $$I=\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{4k^3}=\frac{\zeta(3)}{8}$$