Thống kê - Công thức
Sau đây là danh sách các công thức thống kê được sử dụng trong các hướng dẫn thống kê Tutorialspoint. Mỗi công thức được liên kết với một trang web mô tả cách sử dụng công thức.
A
Adjusted R-Squared - $ {R_{adj}^2 = 1 - [\frac{(1-R^2)(n-1)}{n-k-1}]} $
Arithmetic Mean - $ \bar{x} = \frac{_{\sum {x}}}{N} $
Arithmetic Median - Trung vị = Giá trị của $ \frac{N+1}{2})^{th}\ item $
Arithmetic Range - $ {Coefficient\ of\ Range = \frac{L-S}{L+S}} $
B
Best Point Estimation - $ {MLE = \frac{S}{T}} $
Binomial Distribution - $ {P(X-x)} = ^{n}{C_x}{Q^{n-x}}.{p^x} $
C
Chebyshev's Theorem - $ {1-\frac{1}{k^2}} $
Circular Permutation - $ {P_n = (n-1)!} $
Cohen's kappa coefficient - $ {k = \frac{p_0 - p_e}{1-p_e} = 1 - \frac{1-p_o}{1-p_e}} $
Combination - $ {C(n,r) = \frac{n!}{r!(n-r)!}} $
Combination with replacement - $ {^nC_r = \frac{(n+r-1)!}{r!(n-1)!} } $
Continuous Uniform Distribution - f (x) = $ \begin{cases} 1/(b-a), & \text{when $ a \ le x \ le b $} \\ 0, & \text{when $x \ lt a$ or $x \ gt b$} \end{cases} $
Coefficient of Variation - $ {CV = \frac{\sigma}{X} \times 100 } $
Correlation Co-efficient - $ {r = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{[N\sum x^2 - (\sum x)^2][N\sum y^2 - (\sum y)^2]}} } $
Cumulative Poisson Distribution - $ {F(x,\lambda) = \sum_{k=0}^x \frac{e^{- \lambda} \lambda ^x}{k!}} $
D
Deciles Statistics - $ {D_i = l + \frac{h}{f}(\frac{iN}{10} - c); i = 1,2,3...,9} $
Deciles Statistics - $ {D_i = l + \frac{h}{f}(\frac{iN}{10} - c); i = 1,2,3...,9} $
F
Factorial - $ {n! = 1 \times 2 \times 3 ... \times n} $
G
Geometric Mean - $ G.M. = \sqrt[n]{x_1x_2x_3...x_n} $
Geometric Probability Distribution - $ {P(X=x) = p \times q^{x-1} } $
Grand Mean - $ {X_{GM} = \frac{\sum x}{N}} $
H
Harmonic Mean - $ H.M. = \frac{W}{\sum (\frac{W}{X})} $
Harmonic Mean - $ H.M. = \frac{W}{\sum (\frac{W}{X})} $
Hypergeometric Distribution - $ {h(x;N,n,K) = \frac{[C(k,x)][C(N-k,n-x)]}{C(N,n)}} $
Tôi
Interval Estimation - $ {\mu = \bar x \pm Z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt n}} $
L
Logistic Regression - $ {\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}} $
M
Mean Deviation - $ {MD} =\frac{1}{N} \sum{|X-A|} = \frac{\sum{|D|}}{N} $
Mean Difference - $ {Mean\ Difference= \frac{\sum x_1}{n} - \frac{\sum x_2}{n}} $
Multinomial Distribution - $ {P_r = \frac{n!}{(n_1!)(n_2!)...(n_x!)} {P_1}^{n_1}{P_2}^{n_2}...{P_x}^{n_x}} $
N
Negative Binomial Distribution - $ {f(x) = P(X=x) = (x-1r-1)(1-p)x-rpr} $
Normal Distribution - $ {y = \frac{1}{\sqrt {2 \pi}}e^{\frac{-(x - \mu)^2}{2 \sigma}} } $
O
One Proportion Z Test - $ { z = \frac {\hat p -p_o}{\sqrt{\frac{p_o(1-p_o)}{n}}} } $
P
Permutation - $ { {^nP_r = \frac{n!}{(n-r)!} } $
Permutation with Replacement - $ {^nP_r = n^r } $
Poisson Distribution - $ {P(X-x)} = {e^{-m}}.\frac{m^x}{x!} $
probability - $ {P(A) = \frac{Number\ of\ favourable\ cases}{Total\ number\ of\ equally\ likely\ cases} = \frac{m}{n}} $
Probability Additive Theorem - $ {P(A\ or\ B) = P(A) + P(B) \\[7pt] P (A \cup B) = P(A) + P(B)} $
Probability Multiplicative Theorem - $ {P(A\ and\ B) = P(A) \times P(B) \\[7pt] P (AB) = P(A) \times P(B)} $
Probability Bayes Theorem - $ {P(A_i/B) = \frac{P(A_i) \times P (B/A_i)}{\sum_{i=1}^k P(A_i) \times P (B/A_i)}} $
Probability Density Function - $ {P(a \le X \le b) = \int_a^b f(x) d_x} $
R
Reliability Coefficient - $ {Reliability\ Coefficient,\ RC = (\frac{N}{(N-1)}) \times (\frac{(Total\ Variance\ - Sum\ of\ Variance)}{Total Variance})} $
Residual Sum of Squares - $ {RSS = \sum_{i=0}^n(\epsilon_i)^2 = \sum_{i=0}^n(y_i - (\alpha + \beta x_i))^2} $
S
Shannon Wiener Diversity Index - $ { H = \sum[(p_i) \times ln(p_i)] } $
Standard Deviation - $ \sigma = \sqrt{\frac{\sum_{i=1}^n{(x-\bar x)^2}}{N-1}} $
Standard Error ( SE ) - $ SE_\bar{x} = \frac{s}{\sqrt{n}} $
Sum of Square - $ {Sum\ of\ Squares\ = \sum(x_i - \bar x)^2 } $
T
Trimmed Mean - $ \mu = \frac{\sum {X_i}}{n} $