द्रव्यमान-घनत्व कार्य: बिंदुओं पर द्रव्यमान-घनत्व कैसे होता है?

Aug 17 2020

हम अक्सर द्रव्यमान-घनत्व, आवेश-घनत्व और ऐसे अन्य कार्यों पर चर्चा करते हैं: $\rho(x,y)$ अल्ट्रा पतली प्लेटों के लिए और $\rho(x,y,z)$3-डी ऑब्जेक्ट्स के लिए। इन कार्यों के आउटपुट के लिए इकाइयाँ कहती हैं कि द्रव्यमान या आवेश / इकाई मात्रा$\frac{kg}{m^3}$ या $\frac{C}{m^3}$। मैं एक बिंदु पर एक घनत्व नहीं समझ सकता।

मुझे संदेह है कि जब हम प्रति इकाई आयतन को "एक बिंदु पर" कहते हैं, तो हमारा मतलब है कि द्रव्यमान में मौजूद द्रव्यमान तुरंत बिंदु के आसपास होता है। यहां, हम एक गणना अर्थ में "तुरंत चारों ओर" कहते हैं ताकि मात्रा शून्य के करीब पहुंच जाए। इस तरह एक साथ सभी बिंदुओं का सेट अभी भी पूर्ण वस्तु है।

क्या ये सही है? या मैं निशान से चूक गया हूं?

जवाब

13 ChiralAnomaly Aug 17 2020 at 04:42

जब हम कहते हैं कि द्रव्यमान घनत्व है $\rho(x,y,z)$, हम किसी भी परिमित क्षेत्र के भीतर द्रव्यमान का मतलब है $R$ द्वारा दिया गया है $$ M(R) = \int_R \rho(x,y,z)\ dx\,dy\,dz. $$ दूसरे शब्दों में, जन घनत्व को निर्दिष्ट करना $\rho(x,y,z)$ एक क्षेत्र में होने वाले फ़ंक्शन का वर्णन करने का एक संक्षिप्त तरीका है $R$ इनपुट के रूप में और द्रव्यमान लौटाता है $M(R)$ उस क्षेत्र में उत्पादन के रूप में।

क्षेत्र $R$मनमाने ढंग से छोटा हो सकता है, इसलिए आपका अंतर्ज्ञान सही रास्ते पर है। अगर हम लेते हैं$R$एक बिंदु होने के लिए , फिर द्रव्यमान$M(R)$ शून्य है, चाहे कितना भी बड़ा घनत्व हो (जब तक यह परिमित हो)।

3 fraxinus Aug 17 2020 at 14:50

पदार्थ (जो द्रव्यमान बनाता है) असतत है। हमारे पास अणु, परमाणु, छोटे कण, आदि हैं, ...

संकेत हैं कि अंतरिक्ष स्वयं असतत है, भी (प्लैंक लंबाई के बारे में देखें), लेकिन हम निश्चित रूप से नहीं जानते हैं।

फिर, कभी-कभी (लगभग हमेशा, वास्तव में) यह पदार्थ को छोटे पर्याप्त तराजू पर चिकनी और समरूप के रूप में अनुमानित करने के लिए उपयोगी होता है और हमारे पास उपलब्ध पूर्ण पथरी अपार्टेटस का उपयोग करता है जो वास्तविक संख्या का उपयोग करता है।

इस तरह घनत्व एक अदिश क्षेत्र बन जाता है।

3 DescheleSchilder Aug 17 2020 at 04:55

मूल रूप से, आप सही हैं। एक बिंदु में निहित द्रव्यमान (जब हम निरंतर सामग्रियों की बात करते हैं) शून्य है।
हालांकि, हम वास्तव में लंबाई, क्षेत्र, या मात्रा की एक छोटी राशि ले सकते हैं, गणितीय रूप में वर्णित है$dx$, $dA$, या $dV$ शून्य के करीब पहुंचना । इन्हें लंबाई-, क्षेत्र-, या आयतन तत्व कहा जाता है। पूरे द्रव्यमान को खोजने के लिए 1-1, 2-3 या 3 डी मामले में द्रव्यमान में सभी बिंदुओं पर लंबाई, क्षेत्र, या वॉल्यूम तत्वों के साथ सभी असीम रूप से छोटे द्रव्यमान घनत्व वाले सभी उत्पादों को योग करना है। यह योग घनत्व के उत्पादों का एक अभिन्न अंग बन जाता है$\rho$ तीन अलग-अलग तत्वों के साथ (ग्रहण करना) $\rho$ में स्थिति से स्वतंत्र है $x$, $A$, या $V$):

$$m_{tot}=\int _x\rho dx,$$

एक लाइन पर एक द्रव्यमान के लिए,

$$m_{tot}=\int _A\rho dA,$$

एक सतह पर एक द्रव्यमान के लिए, और

$$m_{tot}=\int _V\rho dV,$$

एक मात्रा में एक द्रव्यमान के लिए।

यदि द्रव्यमान घनत्व द्रव्यमान में स्थिति पर निर्भर है, तो बस प्रतिस्थापित करें $\rho$ द्वारा $\rho (x)$, $\rho (A)$, तथा $\rho (V)$

1 EricTowers Aug 18 2020 at 02:22

एक बिंदु पर द्रव्यमान घनत्व को दो तरीकों से परिभाषित किया जाता है:

  • मात्रा वाले बिंदु तक औसत द्रव्यमान घनत्व की मात्रा, शून्य तक घट जाती है, और
  • एक क्षेत्र के रूप में जो द्रव्यमान देने के लिए एकीकृत है।

यह समझना कि ये दोनों परिभाषाएँ कैसे और कब समान हैं, इसके लिए कुछ माप सिद्धांत की आवश्यकता होती है - जिस समय आप सीखते हैं कि वे एक ही चीज़ नहीं हैं।

उदाहरण वे कैसे एक ही बात कर रहे हैं। मान लीजिए कि द्रव्यमान घनत्व (क्षेत्र) एक स्थिर है$1\, \mathrm{mg}/\mathrm{cm}^3$विचाराधीन प्रत्येक बिंदु पर। लश्कर$x$ऐसी बात हो। आइए हम (सरलता के लिए) गोलाकार आयतन की औसत घनत्व की गणना करें$x$। लश्कर$r$ में त्रिज्या हो $\mathrm{cm}$। आयतन,$V$, और जन $m$, हैं \begin{align*} V(r) &= \frac{4}{3} \pi r^3 \\ m(r) &= \int_{-r}^{r} \int_{-\sqrt{r^2 - z^2}}^{\sqrt{r^2 - z^2}} \int_{-\sqrt{r^2 - z^2 - y^2}}^{\sqrt{r^2 - z^2 - y^2}} 1\, \mathrm{mg}/\mathrm{cm}^3 \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \\ &= \frac{4}{3} \pi r^3 \,\mathrm{mg}/\mathrm{cm}^3 \text{.} \end{align*}

(स्पष्ट इकाइयाँ इस द्रव्यमान को घनत्व की तरह बना सकती हैं। याद रखें कि "$r$"में"$r^3$"दूरस्थ इकाइयाँ हैं जो स्पष्ट इकाइयों के हर में दूरी इकाइयों को रद्द करती हैं।"

फिर बड़े पैमाने पर घनत्व $x$ है $\lim_{r \rightarrow 0} \frac{\frac{4}{3} \pi r^3 \,\mathrm{mg}/\mathrm{cm}^3}{\frac{4}{3} \pi r^3} = 1 \,\mathrm{mg}/\mathrm{cm}^3$। ध्यान दें कि हमें सीमा को ही लेना चाहिए$r \rightarrow 0$। हम बड़े पैमाने पर आयतन के अनुपात का मूल्यांकन नहीं कर सकते$r = 0$चूँकि इसमें शून्य से विभाजन शामिल है। अब फंक्शन का एक ग्राफ जिसकी हम सीमा ले रहे हैं। बीजीय रद्दीकरण (सीमा के तहत अनुमेय, लेकिन इस सीमा के बाहर नहीं) से, हम एक निरंतर कार्य देखने की अपेक्षा करते हैं।

बिंदु $(0,1)$छोड़ा गया है, क्योंकि शून्य से विभाजन अपरिभाषित है। वहाँ मूल्य पर चुपके करने के लिए, हम एक सीमा का उपयोग करते हैं। ध्यान दें कि यदि घनत्व क्षेत्र विविध है (क्षुद्र घनत्व के आसपास छोटे उतार-चढ़ाव और / या उच्चतर या निम्न घनत्व से दूर की प्रवृत्ति)$x$) हम वक्र में इन भिन्नताओं को देखेंगे। इस बहुत ही सरल मॉडल में ऐसी विशेषताएं नहीं हैं।

1 JoonasD6 Sep 13 2020 at 11:53

मैं एक और दृष्टिकोण जोड़ूंगा, क्योंकि सवाल केवल कुछ ऐसा लगता है जो अत्यधिक उन्नत है या जो केवल भौतिकी के उस क्षेत्र में आता है: जो आप पूछ रहे हैं वह ज़ेनो के तीर विरोधाभास के समान है:https://en.wikipedia.org/wiki/Zeno's_paradoxes#Arrow_paradox

असल में, मुझे यकीन है कि आप डेरिवेटिव से परिचित हैं, लेकिन जब वे मनमानी मात्रा में लागू होते हैं तो वे सहज नहीं होते हैं । निश्चित रूप से हम कुछ अवधि and टी पर औसत गति के बारे में बात कर सकते हैं , और इसका कारण यह है कि जब एक ही समय की अवधि को सीमित करते हैं, तो हमें एक निश्चित समय पर तात्कालिक गति मिलती है - एक उपयोगी मात्रा जिसे हम जानते हैं वह अच्छी तरह से परिभाषित है।

"लेकिन गति बढ़ाने के लिए, आपको यात्रा करने की आवश्यकता होगी, और यदि समय नहीं चल रहा है, तो आप यात्रा नहीं कर सकते हैं!" हाँ, अगर आप बड़े पैमाने पर एक बिंदु को देखते हैं, तो यह एक सहज "तात्कालिक" घनत्व (डीएम / डीवी) नहीं है, लेकिन फिर भी हम डेरिवेटिव के साथ काम करते हैं और वे काम करते हैं। :)