$\mathbb N$ एक क्षेत्र है
हमें एक आक्षेप लगता है $\phi$ के बीच $\mathbb N$ तथा $\mathbb Q$। इसलिए, इसके अलावा और गुणा को परिभाषित करना$\mathbb N$ (ऐसा है कि $\phi$ एक समरूपता बन जाता है) रूपांतरित हो जाता है $\mathbb N$ एक मैदान में।
क्या मेरे तर्क में कोई गलती है?
जवाब
एक फ़ील्ड सिर्फ एक सेट नहीं है , यह कुछ अतिरिक्त संरचना (दो फ़ील्ड ऑपरेशन) के साथ एक सेट है । तो यह बिल्कुल सच नहीं है$\mathbb{Q}$ एक क्षेत्र है - बल्कि, $(\mathbb{Q};+,\times)$ एक क्षेत्र है।
अनुमान हमें "परिवहन संरचना:" यदि $\oplus,\otimes$ कुछ सेट पर बाइनरी ऑपरेशन हैं $A$ ऐसा है कि $(A;\oplus,\otimes)$ एक क्षेत्र है और $f:A\rightarrow B$एक आपत्ति है, हम दे सकते हैं$B$एक प्राकृतिक तरीके से एक क्षेत्र की संरचना : संचालन पर विचार करें$\hat{\oplus}$ तथा $\hat{\otimes}$ के द्वारा दिया गया $$x\hat{\oplus} y=f(f^{-1}(x)\oplus f^{-1}(y))\quad\mbox{and}\quad x\hat{\otimes}y=f(f^{-1}(x)\otimes f^{-1}(y))$$ के लिये $x,y\in B$। लेकिन सेट $B$खुद एक क्षेत्र नहीं है; बल्कि, संरचना $(B; \hat{\oplus},\hat{\otimes})$ एक क्षेत्र है।
विशेष रूप से, जब हम सामान्य उठाते हैं $+$ तथा $\times$ अपने पसंदीदा आक्षेप के साथ $h:\mathbb{Q}\rightarrow\mathbb{N}$, हम संचालन प्राप्त करते हैं $\hat{+}$ तथा $\hat{\times}$ ऐसा है कि $(\mathbb{N};\hat{+},\hat{\times})$एक फ़ील्ड है, लेकिन ये ऑपरेशन बहुत ही अजीब-दिखने वाले होंगे - विशेष रूप से, वे सामान्य जोड़ और हमारे द्वारा उपयोग किए जाने वाले प्राकृतिक संख्याओं के गुणन से बिल्कुल अलग होंगे। इसलिए इस परिणाम और इस तथ्य के बीच कोई तनाव नहीं है$(\mathbb{N};+,\times)$स्पष्ट रूप से एक क्षेत्र नहीं है।
कोई गलती नहीं है। वास्तव में, किसी भी अनंत सेट को एक क्षेत्र में बदल दिया जा सकता है। ध्यान दें कि आप जिस ऑपरेशन को परिभाषित करते हैं$\mathbb N$ यह आवश्यक रूप से प्राकृतिक संख्याओं के सामान्य जोड़ और गुणा से अलग होगा (क्योंकि सामान्य संचालन के साथ प्राकृतिक संख्याएँ एक क्षेत्र नहीं हैं)।
सामान्य विकर्ण मैपिंग का उपयोग करते हुए, लेकिन सकारात्मक और नकारात्मक मूल्यों के बीच बारी-बारी से और "सबसे कम शब्दों में भिन्न नहीं" के डुप्लिकेट निरूपण को छोड़ते हुए, हम इस पर आपत्ति कर सकते हैं जिसमें पहले कई शब्द हैं:
$$1\mapsto 0; 2\mapsto 1;3\mapsto -1; 4\mapsto 2;5\mapsto -2; 6\mapsto \frac 12; 7\mapsto -\frac 12; 8\mapsto 3;9\mapsto -3;10\mapsto \frac 13;11\mapsto -\frac 13; 12\mapsto 4;13\mapsto -4; 14\mapsto \frac 32; 15\mapsto -\frac 32; 16\mapsto \frac 23; 17\mapsto -\frac 23; 18\mapsto \frac 14;19\mapsto -\frac 14... etc...$$
अब इस है एक क्षेत्र। योजक की पहचान है$1$ तथा $1 + k = k+1 = k$ सबके लिए $k \in \mathbb N$।
हर मूल्य, $k$ एक योजक व्युत्क्रम है, $-k$ ताकि $k+(-k)= 1$। के additive व्युत्क्रम विदेशी मुद्रा$4$ है $-4 =5$ तथा $4+5 = 1$। इसी तरह$-11 = 10$ तथा $11 + 10 = 1$।
गुणक पहचान है $2$ तथा $2\cdot k = k\cdot 2 = k$ सबके लिए $k \in \mathbb N$।
और हर मूल्य के लिए $k$ के सिवाय $1$, गुणक व्युत्क्रम होगा $\frac 1k$ कहाँ पे $k\cdot \frac 1k = 2$। उदाहरण के लिए$\frac 14 = 6$ तथा $4\cdot 6 = 2$।
और इसी तरह।
यह सब समझ में आता है क्योंकि मैंने जो कुछ भी किया था वह "सामान्य" तर्कसंगत संख्याओं के साथ बदल दिया गया था, जो उनमें मैप करता था। अगर मैं नोट करूँ$k \color{blue}{\mapsto m}$ प्रतिनिधित्व करने के लिए कि मैं "वास्तव में" क्या मतलब है और जो मैंने ऊपर लिखा था उसे काट और पेस्ट करना होगा:
...........
अब इस है एक क्षेत्र। योजक की पहचान है$1\color{blue}{\mapsto 0}$ तथा $1\color{blue}{\mapsto 0} + k = k+1\color{blue}{\mapsto 0} = k$ सबके लिए $k \in \mathbb N$।
हर मूल्य, $k$ एक योजक व्युत्क्रम है, $-k$ ताकि $k+(-k)= 1\color{blue}{\mapsto 0}$। के additive व्युत्क्रम विदेशी मुद्रा$4\color{blue}{\mapsto 2}$ है $-4\color{blue}{\mapsto 2} =5\color{blue}{\mapsto -2}$ तथा $4\color{blue}{\mapsto 2}+5\color{blue}{\mapsto -2} = 1\color{blue}{\mapsto 0}$। इसी तरह$-11\color{blue}{\mapsto -\frac 13} = 10{\mapsto \frac 13}$ तथा $11\color{blue}{\mapsto -\frac 13} + 10\color{blue}{\mapsto \frac 13} = 1\color{blue}{\mapsto 0}$।
गुणक पहचान है $2\color{blue}{\mapsto 1}$ तथा $2\color{blue}{\mapsto 1}\cdot k = k\cdot 2\color{blue}{\mapsto 1} = k$ सबके लिए $k \in \mathbb N$।
और हर मूल्य के लिए $k$ के सिवाय $1\color{blue}{\mapsto 0}$, गुणक व्युत्क्रम होगा $\frac 1k$ कहाँ पे $k\cdot \frac 1k = 2\color{blue}{\mapsto 1}$। उदाहरण के लिए$\frac 1{4\color{blue}{\mapsto 2}} = 6\color{blue}{\mapsto \frac 12}$ तथा $4\color{blue}{\mapsto 2}\cdot 6\color{blue}{\mapsto \frac 12} = 2\color{blue}{\mapsto 1}$।
और इसी तरह।