पतित समय स्वतंत्र गड़बड़ी सिद्धांत कैसे काम करता है? [डुप्लीकेट]

Dec 24 2020

आइए समय के लिए सामान्य सेटअप पर विचार करें स्वतंत्र गड़बड़ी सिद्धांत:

$$H=H_0+\varepsilon H'$$

और फिर हम सामान्य विस्तार सेट कर सकते हैं:

$$(H_0+\varepsilon H')[|n_0\rangle+\varepsilon |n_1\rangle+\varepsilon ^2 |n_2\rangle+...]=(E_n^{(0)}+\varepsilon E_n^{(1)}+\varepsilon ^2 E_n^{(2)}+...)[n_0\rangle+\varepsilon |n_1\rangle+\varepsilon ^2 |n_2\rangle+...]$$

लंबी कहानी छोटी: जब हमें गड़बड़ी के सिद्धांत का उपयोग करके एक समस्या को हल करना होता है, तो केवल एक चीज जो हम रुचि रखते हैं, वह यह है कि आइजनस्टेट्स और आइजेनवेल्स के सुधार की गणना कैसे करें।
यदि हम समय के मामले में स्वतंत्र गैर अध: पतन गड़बड़ी सिद्धांत हैं तो यह कार्य एक बार फिर से आगे बढ़ने के लिए सही है क्योंकि आप सुधारों के सूत्र जानते हैं:

$$E^{(k)}_n=\langle n_0|H'|n_{k-1}\rangle$$ $$|n_k\rangle=\frac{1}{H_0+E^{(0)}_n}|_{|n_0\rangle}[(E_n^{(1)}-H')|n_{k-1}\rangle+E_n^{(2)}|n_{k-2}\rangle+.....+E_n^{(k)}|n_0\rangle]$$

कर दी है! आश्चर्यजनक! लेकिन निश्चित रूप से अगर हमारा हैमिल्टन पतित हो तो क्या होगा? पाठ्यपुस्तकों पर मुझे पुराने फॉर्मूले काम नहीं करने के कारण मिले हैं। मैंने यह भी समझा कि कुछ मामलों में गड़बड़ी अध: पतन को रद्द कर देती है और कुछ अन्य मामलों में ऐसा नहीं होता है। और पतित जगह में मैट्रिक्स को विकर्ण करने की आवश्यकता के बारे में भी बातचीत होती है (यह अंतिम बिंदु फिलहाल मेरे लिए स्पष्ट नहीं है)। अछा ठीक है। लेकिन व्यवहार में: मैं पतित मामले में स्थायी विस्तार को कैसे निर्धारित और हल कर सकता हूं? सुधार के लिए सूत्र क्या हैं? (यह जानना कि सूत्र काम करना भी अच्छा क्यों होगा लेकिन यह इस सवाल का मुख्य बिंदु नहीं है)

वे सरल प्रश्न हैं, लेकिन मुझे अपनी पुस्तकों या व्याख्यान नोट्स में कोई प्रत्यक्ष उत्तर नहीं मिल रहा है। मुझे एक अच्छा और संक्षिप्त जवाब चाहिए। यह विषय मुझे एक शुरुआत के रूप में वास्तव में जटिल लगता है और मैं यहां जो कुछ भी हो रहा है उसका सारांश चाहूंगा। विशेष रूप से व्यावहारिक दृष्टिकोण से, हम पतित मामले में अभ्यास और विस्तार को कैसे हल कर सकते हैं।

जवाब

3 nwolijin Dec 24 2020 at 03:21

पतित राज्यों के लिए गड़बड़ी सिद्धांत के पीछे मुख्य विचार न केवल सुधार बल्कि उन राज्यों को भी ढूंढना है जिन्हें सही किया जा रहा है। केवल विशिष्ट राज्य ही छोटे सुधारों का अधिग्रहण करेंगे, दूसरों द्वारा सही किया जाएगा$O(1)$शर्तें। आइए सरल उदाहरण के रूप में विचार करें। निम्नलिखित हैमिल्टनियन द्वारा दी गई दो स्तरीय प्रणाली पर विचार करें \ _ {समीकरण} एच = \ लेफ्ट (\ _ शुरू {एरे} {ccc} m & \ varepsilon \\ \ varepsilon & m \ एन्ड {एरे} राइट राइट, \ एंड { समीकरण} के साथ$\varepsilon \ll m$। इस प्रणाली को वास्तव में \ _ {समीकरण} E_ \ pm = m \ pm \ varepsilon ~~ \ text {और} ~~ दे कर हल किया जा सकता है \ psi_ \ pm \ rangle = \ left (\ start {array} {ccc} 1 \\ \ pm 1 \ end {array} \ right)। \ end {समीकरण} अब कल्पना करें कि हमने यह परिणाम गड़बड़ी सिद्धांत का उपयोग करके प्राप्त करने की कोशिश की। अप्रतिबंधित हैमिल्टनियन \ \ {{समीकरण} H = \ left (\ start {array} {ccc} m & 0 \\ 0 & m \ end {array} \ right) से शुरू होता है, \ end {समीकरण} का डाउनग्रेड होता है aigenstates \ start { समीकरण} | \ psi ^ {(0)} \ rangle = c_1 \ left (\ start {array} {c} 1 \\ 0 \ end {array} \ right) + c_2 \ left (\ start {array} {c} 0 \ \) \ 1 \ अंत {सरणी} \ सही), \ अंत {समीकरण} सभी ऊर्जा के साथ$E^{(0)}=m$। यह स्पष्ट है कि केवल तभी जब आप अपने unperturbed स्टेट्स को be \ start {समीकरण} कहते हैं \ psi ^ {(0)} _ {1,2} \ rangle = \ left (\ start {array} {ccc} 1 \\ \ pm 1 \ end {array} \ right) \ end) \ end {समीकरण} के कारण सुधार perturbation छोटा है (इस मामले में यह गायब हो जाता है)। सिस्टम को हल किए बिना हम उस परिणाम को कैसे प्राप्त कर सकते हैं? उसके लिए आप अनियंत्रित प्रणाली के लिए एक मनमाना आधार चुन रहे हैं$| \varphi_i \rangle$और "सत्य" को स्पष्ट (और विकृत) व्यक्त करते हैं, उन के रैखिक संयोजनों के रूप में उत्पन्न होता है: \ start / समीकरण} | \ psi ^ {(0)} _ i \ rangle = c ^ {(0)} _ {ij} | \ varphi_j \ rangle, ~~ \ text {और} ~~ | \ psi ^ {(1)} _ i \ rangle = c ^ {(1)} _ {ij} | \ varphi_j \ rangle। \ n अंत {समीकरण} फिर श्रोडिंगर समीकरण को गुणा करना \ _ {समीकरण} (H_0 + \ _ varepsilon V) \ left (! \ psi ^ {(0)} _ i \ rangle + \ varepsilon और \ psi ^ {(1)} _ i (\ _)। rangle \ right) = (E ^ {(0)} + \ varepsilon E ^ {(1)} _ i (\ _) \ _ (psi ^ {{(0)} _ i \ rangle + \ varepsilon और \ psi ^ {(1) | )} _ i \ rangle \ right) \ end {समीकरण} द्वारा$\langle \phi_k |$एक हो जाता है \ start {समीकरण} \ sum_ {j} \ langle \ varphi_k | वी | \ varphi_j \ rangle c_ {ij} ^ {(0)} = E_i ^ {(1)} c_ {ik} ^ {(0)}। \ n {समीकरण} इंडेक्स को छोड़ना$i$हम देखते हैं कि ये समीकरण और कुछ नहीं बल्कि eigenstates \ _ {समीकरण} \ sum_j V_ {kj} c_j = E ^ {(1)} c_k, \ end {समीकरण} के लिए समीकरण हैं, जिसका अर्थ है कि$\det (V-E^{(1)})=0$। इस समीकरण से$E_i^{(1)}$ तथा $c_{ij}^{(0)}$ एक साथ व्युत्पन्न होते हैं।

हमारे उदाहरण पर वापस, हम \ {{समीकरण} शुरू कर सकते हैं | \ varphi_1 \ rangle = \ left (\ start {array} {ccc} 1 \\ 0 \ end {array} \ right), ~~ \ text {और} ~~ | \ varphi_2 \ rangle = \ left (\ start {array} {ccc} 0 \\ 1 \ end {array} / right)। \ end {समीकरण} Schrödinger समीकरण बन जाता है \ start {समीकरण} \ left (\ start {array} {cc} m & \ varepsilon \\ \ varepsilon & m \ end {array} \ right) \ left (\ start {array} } {ccc} c_ {i1} ^ {(0)} + \ varepsilon c_ {i1} ^ {(1)} \\ c_ {i2} ^ {(0)} + \ varepsilon c_ {i2} ^ {(1) )} \ अंत {सरणी} \ दायाँ = = बायाँ (m + \ _ varepsilon E_i ^ {(1)} \ दाएँ) \ बाएँ (\ शुरू {सरणी} {ccc} c_ {i1} ^ {(0)} + \ _) varepsilon c_ {i1} ^ {(1)} \\ c_ {i2} ^ {(0)} + \ varepsilon c_ {i2} ^ {(1)} \ अंत {सरणी} सही दाईं ओर, \ n {समीकरण} या सरलीकरण के बाद \ समीकरण {प्रारंभ} \ varepsilon \ left (\ start {array} {ccc} c_ {i2} ^ {(0)} \\ c_ {i1} ^ {(0)} \ अंत {{}} \ right ) = \ varepsilon E_i ^ {(1)} \ left (\ start {array} {ccc} c_ {i1} ^ {(0)} \\ c_ {i2} ^ {(0)} का अंत {array} \ _ दाएँ), \ n {समीकरण} जिसका हल \ start {समीकरण} E ^ {(1)} = दोपहर 1, ~~ \ text {for} ~~ \ left (\ start {array} {ccc} 1 \ _) है। \ \ pm 1 \ अंत {सरणी} \ सही), \ अंत {समीकरण} जो वास्तव में हमारे पास पहले था।

spiridon_the_sun_rotator Dec 24 2020 at 03:09

आप जिस चीज में रुचि रखते हैं, उसे धर्मनिरपेक्ष समीकरण कहा जाता है

शास्त्रीय स्रोत Landau & Lifshitz का दूसरा खंड है https://books.google.ru/books?id=neBbAwAAQBAJ&pg=PA110&hl=ru&source=gbs_selected_pages&cad=2#v=onepage&q&f=false

चलो $\psi_{n}^{(0)}, \psi_{n^{'}}^{(0)}$ एक ही eigenvalue से संबंधित eigenfunctions हो $E_n^{(0)}$। द्वारा$\psi_{n}^{(0)}, \psi_{n^{'}}^{(0)}$हम अनियंत्रित कार्यों को मानते हैं, कुछ मनमाने तरीके से चुने गए। ज़ीरोथ क्रम में सही स्वदेशीकरण फार्म के रैखिक संयोजन हैं:$$ c_{n}^{(0)} \psi_{n}^{(0)} + c_{n^{'}}^{(0)} \psi_{n^{'}}^{(0)} + \ldots $$

ऊर्जा के लिए गड़बड़ी के पहले क्रम में प्रतिस्थापन $E_n^{(0)} + E^{(1)}$ अपनी पोस्ट में दूसरे समीकरण में देता है: $$ E^{(1)} c_{n}^{(0)} = \sum_{n^{'}} H_{n n^{'}} c_{n^{'}}^{(0)} $$ या इसे निम्नलिखित तरीके से फिर से लिखें: $$ \sum_{n^{'}} (H_{n n^{'}} - E^{(1)} \delta_{n n^{'}})c_{n^{'}}^{(0)} = 0 $$इस समीकरण में समाधान हैं, शून्य दाएं हाथ की प्रणाली के रूप में, केवल अगर मैट्रिक्स, सिस्टम को परिभाषित करना पतित है। वर्ग मैट्रिक्स के लिए यह निर्धारक के गायब होने के बराबर है:$$ \boxed{\det(H_{n n^{'}} - E^{(1)} \delta_{n n^{'}}) = 0} $$

यह समीकरण उपर्युक्त धर्मनिरपेक्ष समीकरण है। और प्रतिध्वनि$E^{(1)}$ गड़बड़ी ऊर्जा सुधार और गुणांक के समीकरण के समाधान को निर्धारित करती है $c_{n^{'}}^{(0)}$

ZeroTheHero Dec 24 2020 at 03:31

पतित मामले के लिए एक विस्तार स्थापित करना संभव है, लेकिन केवल अगर आप "सही" आधार का उपयोग करते हैं। "सही" आधार यह आधार है जो ब्याज के पतित उपवर्ग में गड़बड़ी को विकर्ण करता है। तो फिर निर्माण के द्वारा इस उपस्पेस, में कोई ऑफ विकर्ण शर्तों हो जाएगा यानी आधार वैक्टर के साथ इस नए आधार में$\vert\alpha_i\rangle$ ताकि $\hat V\vert\alpha_i\rangle=\lambda_i\vert\alpha_i\rangle$, आपके पास $\langle \alpha _k\vert \hat V\vert \alpha_j\rangle=\delta_{kj}$ इसलिए आप कभी नहीं बँटते $0$ चूंकि विस्तार में शर्तें शामिल नहीं हैं $k=j$

यदि आप इस नए आधार का उपयोग करते हैं तो आप आगे बढ़ सकते हैं जैसे कि समस्या कम नहीं हुई थी। प्रक्रिया अभी भी विफल हो सकती है अगर गड़बड़ी$\hat V$ब्याज की अध: पतन में पुनर्जन्म दोहराया है; इस मामले में कुछ भी नहीं किया जाना चाहिए, अर्थात उन शेष पतित अवस्थाओं के लिए कोई स्पष्ट स्थायी विस्तार मौजूद नहीं होगा।