Quantstrat 'for loop'를 mclapply [parallelized]로 어떻게 대체합니까?
quantstrat를 병렬화하고 싶습니다. 내 코드는 이와 정확히 같지는 않지만 문제를 보여줍니다. 내가 생각하는 문제는 .blotter env가 포인터 메모리 주소로 초기화되고 new.env ()의 배열 / 행렬을 초기화 할 수 없다는 것입니다.
내가하고 싶은 것은 for 루프를 mclapply로 대체하여 다양한 날짜 / 기호로 여러 applyStrategies를 실행할 수 있도록하는 것입니다 (여기에는 다양한 기호 만 표시됨). 내 최종 목표는 beowulf 클러스터 (makeCluster)이며 반복 당 다양한 기호를 사용하여 최대 252 거래일 (롤링 윈도우)을 사용하여 병렬로 실행할 계획입니다 (하지만 그 모든 것이 필요하지는 않습니다. mclapply를 사용할 수있는 방식으로 포트폴리오 및 후속 .blotter 메모리 개체를 할당하는 방법)
#Load quantstrat in your R environment.
rm(list = ls())
local()
library(quantstrat)
library(parallel)
# The search command lists all attached packages.
search()
symbolstring1 <- c('QQQ','GOOG')
#symbolstring <- c('QQQ','GOOG')
#for(i in 1:length(symbolstring1))
mlapply(symbolstring1, function(symbolstring)
{
#local()
#i=2
#symbolstring=as.character(symbolstring1[i])
.blotter <- new.env()
.strategy <- new.env()
try(rm.strat(strategyName),silent=TRUE)
try(rm(envir=FinancialInstrument:::.instrument),silent=TRUE)
for (name in ls(FinancialInstrument:::.instrument)){rm_instruments(name,keep.currencies = FALSE)}
print(symbolstring)
currency('USD')
stock(symbolstring,currency='USD',multiplier=1)
# Currency and trading instrument objects stored in the
# .instrument environment
print("FI")
ls(envir=FinancialInstrument:::.instrument)
# blotter functions used for instrument initialization
# quantstrat creates a private storage area called .strategy
ls(all=T)
# The initDate should be lower than the startDate. The initDate will be used later while initializing the strategy.
initDate <- '2010-01-01'
startDate <- '2011-01-01'
endDate <- '2019-08-10'
init_equity <- 50000
# Set UTC TIME
Sys.setenv(TZ="UTC")
getSymbols(symbolstring,from=startDate,to=endDate,adjust=TRUE,src='yahoo')
# Define names for portfolio, account and strategy.
#portfolioName <- accountName <- strategyName <- "FirstPortfolio"
portfolioName <- accountName <- strategyName <- paste0("FirstPortfolio",symbolstring)
print(portfolioName)
# The function rm.strat removes any strategy, portfolio, account, or order book object with the given name. This is important
#rm.strat(strategyName)
print("port")
initPortf(name = portfolioName,
symbols = symbolstring,
initDate = initDate)
initAcct(name = accountName,
portfolios = portfolioName,
initDate = initDate,
initEq = init_equity)
initOrders(portfolio = portfolioName,
symbols = symbolstring,
initDate = initDate)
# name: the string name of the strategy
# assets: optional list of assets to apply the strategy to.
# Normally these are defined in the portfolio object
# contstrains: optional portfolio constraints
# store: can be True or False. If True store the strategy in the environment. Default is False
print("strat")
strategy(strategyName, store = TRUE)
ls(all=T)
# .blotter holds the portfolio and account object
ls(.blotter)
# .strategy holds the orderbook and strategy object
print(ls(.strategy))
print("ind")
add.indicator(strategy = strategyName,
name = "EMA",
arguments = list(x = quote(Cl(mktdata)),
n = 10), label = "nFast")
add.indicator(strategy = strategyName,
name = "EMA",
arguments = list(x = quote(Cl(mktdata)),
n = 30),
label = "nSlow")
# Add long signal when the fast EMA crosses over slow EMA.
print("sig")
add.signal(strategy = strategyName,
name="sigCrossover",
arguments = list(columns = c("nFast", "nSlow"),
relationship = "gte"),
label = "longSignal")
# Add short signal when the fast EMA goes below slow EMA.
add.signal(strategy = strategyName,
name = "sigCrossover",
arguments = list(columns = c("nFast", "nSlow"),
relationship = "lt"),
label = "shortSignal")
# go long when 10-period EMA (nFast) >= 30-period EMA (nSlow)
print("rul")
add.rule(strategyName,
name= "ruleSignal",
arguments=list(sigcol="longSignal",
sigval=TRUE,
orderqty=100,
ordertype="market",
orderside="long",
replace = TRUE,
TxnFees = -10),
type="enter",
label="EnterLong")
# go short when 10-period EMA (nFast) < 30-period EMA (nSlow)
add.rule(strategyName,
name = "ruleSignal",
arguments = list(sigcol = "shortSignal",
sigval = TRUE,
orderside = "short",
ordertype = "market",
orderqty = -100,
TxnFees = -10,
replace = TRUE),
type = "enter",
label = "EnterShort")
# Close long positions when the shortSignal column is True
add.rule(strategyName,
name = "ruleSignal",
arguments = list(sigcol = "shortSignal",
sigval = TRUE,
orderside = "long",
ordertype = "market",
orderqty = "all",
TxnFees = -10,
replace = TRUE),
type = "exit",
label = "ExitLong")
# Close Short positions when the longSignal column is True
add.rule(strategyName,
name = "ruleSignal",
arguments = list(sigcol = "longSignal",
sigval = TRUE,
orderside = "short",
ordertype = "market",
orderqty = "all",
TxnFees = -10,
replace = TRUE),
type = "exit",
label = "ExitShort")
print("summary")
summary(getStrategy(strategyName))
# Summary results are produced below
print("results")
results <- applyStrategy(strategy= strategyName, portfolios = portfolioName,symbols=symbolstring)
# The applyStrategy() outputs all transactions(from the oldest to recent transactions)that the strategy sends. The first few rows of the applyStrategy() output are shown below
getTxns(Portfolio=portfolioName, Symbol=symbolstring)
mktdata
updatePortf(portfolioName)
dateRange <- time(getPortfolio(portfolioName)$summary)[-1] updateAcct(portfolioName,dateRange) updateEndEq(accountName) print(plot(tail(getAccount(portfolioName)$summary$End.Eq,-1), main = "Portfolio Equity"))
#cleanup
for (name in symbolstring) rm(list = name)
#rm(.blotter)
rm(.stoploss)
rm(.txnfees)
#rm(.strategy)
rm(symbols)
}
)
하지만 오류가 발생합니다. get (symbol, envir = envir) 오류 : 'QQQ'개체를 찾을 수 없습니다.
특히 문제는 FinancialInstrument :::. instrument가 캡슐화 된 변수 호출 (기호 문자열)로 업데이트되지 않은 메모리 주소를 가리키고 있다는 것입니다.
답변
apply.paramset
in은 quantstrat
이미 foreach
구문을 사용하여 applyStrategy
.
apply.paramset
작업자가 작업을 수행하기 위해 환경을 사용할 수 있는지 확인하고 적절한 결과를 수집하여 호출 프로세스로 다시 보내기 위해 상당한 양의 작업을 수행해야합니다.
가장 간단한 방법은 아마도를 사용하는 것입니다 apply.paramset
. 날짜와 기호 매개 변수를 만들고 함수가 정상적으로 실행되도록하십시오.
또는 제안 된 사례에 맞게 수정하기 위해 병렬 foreach
구성 을 사용하는 데 필요한 단계를 살펴 보는 것이 좋습니다 apply.paramset
.
또한 귀하의 질문에 Beowulf 클러스터 및 mclapply
. 작동하지 않습니다. mclapply
단일 메모리 공간에서만 작동합니다. Beowulf 클러스터는 일반적으로 단일 메모리와 프로세스 공간을 공유하지 않습니다. 일반적으로 MPI와 같은 병렬 라이브러리를 통해 작업을 배포합니다. apply.paramset
에 doMPI
백엔드를 사용하여 Beowulf 클러스터에 이미 배포 할 수 foreach
있습니다. 이것이 우리가 사용한 이유 중 하나입니다 foreach
. 사용 가능한 다양한 병렬 백엔드입니다. doMC
에 대한 백엔드 foreach
실제로는 사용 mclapply
뒤에서.
나는 이것이 코드를 병렬화한다고 믿는다. 기호와 함께 표시기를 교체했지만 다른 기호와 날짜를 사용하는 논리가 있습니다.
기본적으로 추가했습니다
Dates=paste0(startDate,"::",endDate)
rm(list = ls())
library(lubridate)
library(parallel)
autoregressor1 = function(x){
if(NROW(x)<12){ result = NA} else{
y = Vo(x)*Ad(x)
#y = ROC(Ad(x))
y = ROC(y)
y = na.omit(y)
step1 = ar.yw(y)
step2 = predict(step1,newdata=y,n.ahead=1)
step3 = step2$pred[1]+1 step4 = (step3*last(Ad(x))) - last(Ad(x)) result = step4 } return(result) } autoregressor = function(x){ ans = rollapply(x,26,FUN = autoregressor1,by.column=FALSE) return (ans)} ########################indicators############################# library(quantstrat) library(future.apply) library(scorecard) reset_quantstrat <- function() { if (! exists(".strategy")) .strategy <<- new.env(parent = .GlobalEnv) if (! exists(".blotter")) .blotter <<- new.env(parent = .GlobalEnv) if (! exists(".audit")) .audit <<- new.env(parent = .GlobalEnv) suppressWarnings(rm(list = ls(.strategy), pos = .strategy)) suppressWarnings(rm(list = ls(.blotter), pos = .blotter)) suppressWarnings(rm(list = ls(.audit), pos = .audit)) FinancialInstrument::currency("USD") } reset_quantstrat() initDate <- '2010-01-01' endDate <- as.Date(Sys.Date()) startDate <- endDate %m-% years(3) symbolstring1 <- c('SSO','GOLD') getSymbols(symbolstring1,from=startDate,to=endDate,adjust=TRUE,src='yahoo') #symbolstring1 <- c('SP500TR','GOOG') .orderqty <- 1 .txnfees <- 0 #random <- sample(1:2, 2, replace=FALSE) random <- (1:2) equity <- lapply(random, function(x) {#x=1 try(rm("account.Snazzy","portfolio.Snazzy",pos=.GlobalEnv$.blotter),silent=TRUE)
rm(.blotter)
rm(.strategy)
portfolioName <- accountName <- strategyName <- paste0("FirstPortfolio",x+2)
#endDate <- as.Date(Sys.Date())
startDate <- endDate %m-% years(1+x)
#Load quantstrat in your R environment.
reset_quantstrat()
# The search command lists all attached packages.
search()
symbolstring=as.character(symbolstring1[x])
print(symbolstring)
try(rm.strat(strategyName),silent=TRUE)
try(rm(envir=FinancialInstrument:::.instrument),silent=TRUE)
for (name in ls(FinancialInstrument:::.instrument)){rm_instruments(name,keep.currencies = FALSE)}
print(symbolstring)
currency('USD')
stock(symbolstring,currency='USD',multiplier=1)
# Currency and trading instrument objects stored in the
# .instrument environment
print("FI")
ls(envir=FinancialInstrument:::.instrument)
# blotter functions used for instrument initialization
# quantstrat creates a private storage area called .strategy
ls(all=T)
init_equity <- 10000
Sys.setenv(TZ="UTC")
print(portfolioName)
print("port")
try(initPortf(name = portfolioName,
symbols = symbolstring,
initDate = initDate))
try(initAcct(name = accountName,
portfolios = portfolioName,
initDate = initDate,
initEq = init_equity))
try(initOrders(portfolio = portfolioName,
symbols = symbolstring,
initDate = initDate))
# name: the string name of the strategy
# assets: optional list of assets to apply the strategy to.
# Normally these are defined in the portfolio object
# contstrains: optional portfolio constraints
# store: can be True or False. If True store the strategy in the environment. Default is False
print("strat")
strategy(strategyName, store = TRUE)
ls(all=T)
# .blotter holds the portfolio and account object
ls(.blotter)
# .strategy holds the orderbook and strategy object
print(ls(.strategy))
print("ind")
#ARIMA
add.indicator(
strategy = strategyName,
name = "autoregressor",
arguments = list(
x = quote(mktdata)),
label = "arspread")
################################################ Signals #############################
add.signal(
strategy = strategyName,
name = "sigThreshold",
arguments = list(
threshold = 0.25,
column = "arspread",
relationship = "gte",
cross = TRUE),
label = "Selltime")
add.signal(
strategy = strategyName,
name = "sigThreshold",
arguments = list(
threshold = 0.1,
column = "arspread",
relationship = "lt",
cross = TRUE),
label = "cashtime")
add.signal(
strategy = strategyName,
name = "sigThreshold",
arguments = list(
threshold = -0.1,
column = "arspread",
relationship = "gt",
cross = TRUE),
label = "cashtime")
add.signal(
strategy = strategyName,
name = "sigThreshold",
arguments = list(
threshold = -0.25,
column = "arspread",
relationship = "lte",
cross = TRUE),
label = "Buytime")
######################################## Rules #################################################
#Entry Rule Long
add.rule(strategyName,
name = "ruleSignal",
arguments = list(
sigcol = "Buytime",
sigval = TRUE,
orderqty = .orderqty,
ordertype = "market",
orderside = "long",
pricemethod = "market",
replace = TRUE,
TxnFees = -.txnfees
#,
#osFUN = osMaxPos
),
type = "enter",
path.dep = TRUE,
label = "Entry")
#Entry Rule Short
add.rule(strategyName,
name = "ruleSignal",
arguments = list(
sigcol = "Selltime",
sigval = TRUE,
orderqty = .orderqty,
ordertype = "market",
orderside = "short",
pricemethod = "market",
replace = TRUE,
TxnFees = -.txnfees
#,
#osFUN = osMaxPos
),
type = "enter",
path.dep = TRUE,
label = "Entry")
#Exit Rules
print("summary")
summary(getStrategy(strategyName))
# Summary results are produced below
print("results")
results <- applyStrategy(strategy= strategyName, portfolios = portfolioName)
# The applyStrategy() outputs all transactions(from the oldest to recent transactions)that the strategy sends. The first few rows of the applyStrategy() output are shown below
getTxns(Portfolio=portfolioName, Symbol=symbolstring)
mktdata
updatePortf(portfolioName,Dates=paste0(startDate,"::",endDate))
dateRange <- time(getPortfolio(portfolioName)$summary) updateAcct(portfolioName,dateRange[which(dateRange >= startDate & dateRange <= endDate)]) updateEndEq(accountName, Dates=paste0(startDate,"::",endDate)) print(plot(tail(getAccount(portfolioName)$summary$End.Eq,-1), main = symbolstring)) tStats <- tradeStats(Portfolios = portfolioName, use="trades", inclZeroDays=FALSE,Dates=paste0(startDate,"::",endDate)) final_acct <- getAccount(portfolioName) #final_acct #View(final_acct) options(width=70) print(plot(tail(final_acct$summary$End.Eq,-1), main = symbolstring)) #dev.off() tail(final_acct$summary$End.Eq) rets <- PortfReturns(Account = accountName) #rownames(rets) <- NULL tab.perf <- table.Arbitrary(rets, metrics=c( "Return.cumulative", "Return.annualized", "SharpeRatio.annualized", "CalmarRatio"), metricsNames=c( "Cumulative Return", "Annualized Return", "Annualized Sharpe Ratio", "Calmar Ratio")) tab.perf tab.risk <- table.Arbitrary(rets, metrics=c( "StdDev.annualized", "maxDrawdown" ), metricsNames=c( "Annualized StdDev", "Max DrawDown")) tab.risk return (as.numeric(tail(final_acct$summary$End.Eq,1))-init_equity)
#reset_quantstrat()
}
)
패럴 라이즈 된 것처럼 보이지만 init_equity를 올바르게 업데이트하지 않습니다.