Extração de dados de tabela da web usando python

Aug 17 2020

Eu preciso extrair uma tabela de um site "https://geniusimpex.org/pakistan-import-data/" que tem milhares de linhas, então eu queria automatizar o processo usando bs4 e selênio, mas quando extraio apenas a tabela o cabeçalho da tabela é extraído. Este é o código que usei

from bs4 import BeautifulSoup   
from urllib.request import urlopen

url = "https://geniusimpex.org/pakistan-import-data/"

html = urlopen(url)

soup = BeautifulSoup(html, 'lxml')  
type(soup)  
soup.prettify()  
print(soup.find_all('tr'))  

Ele mostra a seguinte saída
[1]:https://i.stack.imgur.com/GItzv.png

Como você pode ver, apenas a primeira linha é extraída. Alguém pode me dizer por que não consigo extrair a tabela e como posso fazer isso? Será muito útil. Desculpe se não fui claro ou não consegui explicar meu problema. Esta é a primeira vez que faço uma pergunta sobre estouro de pilha.

Respostas

1 AndrejKesely Aug 17 2020 at 18:58

Os dados são carregados do URL externo como Json. Você pode usar este script para carregar as informações:

import json
import requests


url = 'https://geniusimpex.org/wp-admin/admin-ajax.php?action=ge_forecast_list_data&order=asc&offset={offset}&limit=1000'

offset = 0
while True:
    data = requests.get(url.format(offset=offset)).json()

    # print data to screen:
    for row in data.get('rows', []):
        for k, v in row.items():
            print('{:<30} {}'.format(k, v))
        print('-' * 80)

    if len(data.get('rows', [])) != 1000:
        break

    offset += 1000

Impressões:

...

--------------------------------------------------------------------------------
count                          T
importer_name                  <span file_id="27893" post_count="T" post_id="2157293">BISMILLAH STEEL FURNACE \n NEAR GRID STATION DEEWAN</span>
goods_description              IRON AND STEEL REMELTABLE SCRAP HARMONIZED CODE: 7204.4990 REFERENCE NUMBER:UM/PAK/5146A ITN: X20200629019843 NWT WEIGHT-19.650 MT SHIPPERS LOAD, STOWAGE AND COUNT
hs_code                        
shipment_port                   NEWARK  APT/NEW 
gross_weight                    19.65 
number_of_packages              1 
unit_of_packages                PACKAGES 
size_of_container               1 X 20FT 
imported_from_name             SEALINK INTERNATIONAL INC C/O\n UNIVERSAL METALS, ,
bill_of_lading_number           SII145321 
bill_of_lading_date            <span data="10-08-2020">10-08-2020</span>
--------------------------------------------------------------------------------
count                          T
importer_name                  <span file_id="27938" post_count="T" post_id="2159597">ASAD SHAHZAD S/O FAQIR ZADA</span>
goods_description              1 USED VEHICLE TOYOTA VITZ CHASSIS NO: KSP130 -2204837
hs_code                        NA
shipment_port                   NAGOYA,  AICHI 
gross_weight                    .97 
number_of_packages              1 
unit_of_packages                UNIT 
size_of_container               1 X 40FT 
imported_from_name             KASHMIR MOTORS , 3055-9-104 KUZUTSUKA NIIGATA KITA
bill_of_lading_number           TA200716H06- 10 
bill_of_lading_date            <span data="10-08-2020">10-08-2020</span>
--------------------------------------------------------------------------------


...

EDIT: Para salvar em CSV, você pode usar este script:

import json
import requests
import pandas as pd


url = 'https://geniusimpex.org/wp-admin/admin-ajax.php?action=ge_forecast_list_data&order=asc&offset={offset}&limit=1000'

offset = 0
all_data = []
while True:
    data = requests.get(url.format(offset=offset)).json()

    # print data to screen:
    for row in data.get('rows', []):
        all_data.append(row)
        for k, v in row.items():
            print('{:<30} {}'.format(k, v))
        print('-' * 80)

    if len(data.get('rows', [])) != 1000:
        break

    offset += 1000

df = pd.DataFrame(all_data)
df.to_csv('data.csv')

Produz: